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ABSTRACT: During geotechnical investigations 
(GI) geologists test only “infinitesimal” volumes of 
soil. GI operations i.e., soil sampling, in situ and lab 
tests, data interpretation, etc. distort the data, and then 
the geologists subjectively “inflate” this fuzzy data 
further on over the whole subsoil volume. The 
geologists are paid only ≈0.05-0.1% of the total 
capital construction cost for their efforts. Luckily, 
most structures are highly insensitive to these 
uncertainties with the exception of soil local 
disruptions (cracks, shears), which are usually 
neglected. The paper describes a simple 
computerized method to evaluate these uncertainties 
by determining the representative number of 
boreholes and the respective values of settlements, 
tilts and their scatter. 



1 INTRODUCTION 

During geotechnical investigations (GI) geologists 
test “infinitesimal” volumes of subgrade (≈10-6 
fractions of the total subgrade volume), GI cost only 
0.05-0.1% of the total capital construction cost 
(Barvashov, 2007). All tests and operations in situ or 
in laboratory: drilling holes, CPT, soil sampling, 
transportation, preparation of samples for laboratory 
tests, the tests per se, etc. degrade soil properties. The 
geologists creatively “inflate” this fuzzy GI soil data 
into continuous stratification on several cross 
sections. Then the structural engineers (designers) 
“inflate” the GI data between cross sections. They 
often reduce the values of soil parameters to be “on 
the safe side”. However, this is often unsafe. But GI 
data is so fuzzy that it can differ much even between 
very closely located boreholes, as well (Figure 1). 
 

 
 
Figure 1. Real dilatometer moduli profiles in test holes, spaced 
1.5 m from each other, and their ratio: a - deformation modulus 
Е1 profile versus depth in the 1st test hole; b – E2 profile in the 
nearby 2nd test hole; c – E1/E2 ratio profile 

Figure 1 shows that the values of deformation moduli E1, 
E2, E1/E2, measured in closely spaced test holes (at 1.5 
m), differ very much. It is so for c and φ either. 
Most structures are “robust” and “insensitive” i.e., do 
not ”feel“ soil data scatter, and even simplified subsoil 
models yield acceptable results. “Don’t save on footings” 
wisely advised Peter I (Russia’s Emperor, XVIII century).  
However, failures of structures are very rare and are 
mostly due to scarce and erroneous GI data, human 
error and neglect of formation of soil distruction 
(“plastic”) zones under footing edges. The latter ones 
were firstly visualized by Mikheev et al.  who pushed a 
10 cm wide test plate into transparent paraffin (Figure 
2). 50 years later Photo Imaging Velocimetry (PIV) 
technique made it possible to obtain much better 
images (Figure 3).  
 

 
 
Figure 2. Plastic zones under the edges of 10 cm plate, pushed 
into highly transparent paraffin 

 
 
Figure 3. Shear cracks under a test plate in clay 
 

FEM software (PLAXIS) can simulate elastoplastic soil 
behavior in shear only for very fine FEM grids (on the 
right). It does not “see” such shear cracks if FEM grid is 
not fine enough. Figure 4 shows a deep “crack” under 
the right side of a footing (very fine FEM grid) and 
almost no shear on the right (rough FEM grid). A simple 
method (see below) to assess the depth of such “crack” 
is described below.  

 

 
 

Figure 4. “Cuts” in sand  
  



 
 
Figure 5. “Cuts” in clay 
 

Fig. 5 shows Plaxis analysis output with similar shear 
cracks in clay soil. They look even more  intricate than 
the images above on Figure 3. The “cuts” block 
distribution capacity of the layer below the footing i.e., 
this layer behaves in the same way as a Winkler layer. 
Therefore, if any subgrade elastic model such as elastic 
space is covered with a Winker springs layer then it 
would simplify and improve analysis of subsoil-structure 
interaction. A Winkler model with laterally variable 
subgrade ratio is might be also valid. 
1  THEORY  

The paper describes a new analytical method for 
evaluating virtual settlements and tilts of a designed 
structure, depending on the number of drilled GI 
boreholes and the soil data volume. The method 
applies the simplest Winkler model with non-
uniformly distributed subgrade modulus K=K(x,y), 
calculated by extrapolating the scarce data from N 
boreholes. Firstly, K1, K2, … KN values are calculated 
on the tops of N boreholes. Then Ki values are 
extrapolated over the whole of the subgrade surface 
with the help of Shepard continuous approximation 
function K(x,y) (Shepard, 1968), having a free 
parameter of shape n. Variation of n yields different 
distributions K=K(x,y) that simulate the fuzziness of 
the approximation between the test points. The scatter 
of settlements and tilts is determined in order to 
decide if the current number of boreholes is 
representative. The algorithm was programed in 
MathCad, and two numerical cases for E, c and φ 
distributions in 5 and 9 boreholes were analyzed.  
The analysis showed that the values of mean 
settlements have low sensitivity to the differences of 
boreholes number while the tilts are rather sensitive.  
2 ANALYSIS OF STRUCTURE SETTLEMENTS, 

ACCOUNTING FOR “DATA INFLATION” AND “CUT” 

The proposed method is illustrated by the following 
case of a stiff rectangular 40x20 m structure, loaded 
uniformly with q=300 kPa to be built on highly 
heterogeneous subsoil, both horizontally and 
vertically. Е, с, φ vertical profiles are given in 9 
boreholes, uniformly spaced 20x10 m over the 
subsoil surface with one borehole in the center and 
other ones – at the corners and at the sides midpoints. 
The vertical profiles of E, c and φ values in boreholes 
were computed by a random numbers generator and 
shown on Figure 6 below. (We could not get “real” 
data from geologists, only “inflated” data was 
available).  
 

 
 
Figure 6. An example of Е, с φ vertical profiles in the center of 
the L = 40 and B = 20 m stiff rectangular structure 

 

Subsoil settlements (S) at points under uniformly 
distributed load q below the structure, are calculated 
with the help of the equation for determination the 
depth of the cut (plastic zone under the edge of the 
foundation):  

. (1) 

where q = pressure under the footing edge; h = the 
footing depth; с, φ, γ = soil parameters.  
 As per equation (1) the Mohr-Coulomb plasticity 

criterion is fulfilled just along the boundary of the 

egg-shaped zone while it is exceeded inside this zone 

that is impossible. This equation give realistic 

solution only in the case if the plastic criterion is 

fulfilled just in one “plastic” point, above which a 

fracture appears as it happens in the experiment and 

in situ (Figure 3). Then it is possible to calculate the 

respective value of the critical load pкр that produces 

one plastic point. 

 In order to do it consider a heavy soil layer “cut” to 

the depth H that behaves both as a Winkler layer as 

well as an additional soil weight load that sums up 

with the applied evenly distributed load γH in 

addition to the surcharge γh. Under the loaded 

interval it is the evenly distributed load γH that add 

up to the applied load, resulting in γ·(h+Н). If 

p + γH = pкр then a point-like plastic point is 

generated at depth H under the load edge, whose 

depth from the surface is Zmax = 0. Then it follows 

from equation (1) that  

 (2)  

Hence the cut depth is  

. (3) 

Hence, we have obtained the equation for the cut Нр 
depth that coincides with Zmax if K0 = 1. However, the 
meaning of the equation is different: Hр is the depth of 
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the shear cut (“cut”) with a plastic point at its bottom 
end rather than “pseudoplastic” N.P.Puzirevsky zone. 
Application of the contact model with the cut reduces 
the footing-structure interaction problem to Fredholm 
integral equation of the first type that ensures 
convergence of Schwarz iteration process (Barvashov, 
2005).  
Then the settlement is computed from equation below: 

  (4) 

where: z = vertical compressive stresses in subsoil at 
point (x,y,z) under uniform load q; E(x,y,z) = 
deformation modulus at point (x,y,z); z(x,y,z) = 
vertical normal stress at point (x,y,z); Hc = 
compressible layer thickness; Zmax = depth of the cut 
under points of the footing contour, see eq. (1). As is 
seen on Figure 7 equation (1) gives two Z values, 
among which Zmax = Hp = 4 m is chosen, as a  more 
realistic one to avoid iterations as c and φ values are 
highly variable versus depth. Otherwise, 
concentration of stresses would be too high i.e., 
enough to punch through to a greater 4 m depth that 
results in disappearance of the concentration of 
stresses. 

 

 
 
Figure 7. Cut depth Hp=4 m 

 
 
The settlements Si=S(xi,yi) i=1,2, … N under uniformly 
distributed load q=300 kPa at N=9 borehole points are 
determined by integrating vertical deformations (4). 
Then subgrade modulus values at discrete points of the 
test boreholes:  

                 Ki=K(xi,yi)=q/S(xi,yi) i=1,2,...9  (5) 

Then Shepard 2D approximation is applied:  

  (6)  

where XYi,1 and XYi,2 = ith borehole coordinates; x, y = 
approximation points between boreholes; n = shape 
parameter of interpolation; N>1 = number of 
boreholes; Ki = subgrade ratio value at the ith borehole 
location. 
Settlements and tilts of the stiff structure are then 
determined from its 3 static equilibrium equations (one 
force, and two moments), as follows: 

                                   (7) 

with G = matrix of the system of equilibrium; a = 
column of unknown values of the tilts and the 
settlement under the structure center; F = the column 
of resultant moments and load from the structure: 

 ;  (8) 

the values of matrix G elements are calculated by 
integration: 

               (9) 

with Q=qLB. (10) 

 

 
 
Figure 8. Isolines of the subgrade modulus K=K(x,y,2,9) 
(overview) 

 
Here the considerable tilt is due to random choice of soil 
parameters profiles versus depth distribution, imitating 
those from CPT data. We had to simulate these profiles 
randomly, because the “raw” data is not available in GI 
reports.   
Analytical settlements and tilts were compared for 
different values of shape parameter n=1, 2, 3, 4. It was 
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so done to simulate the fact that the values of subgrade 
modulus K were only computed at the locations of the 
test boreholes but they are unknown in-between 
boreholes. The analytical results are given in Table 1. 
Positive tilt directions coincide with positive directions of 
coordinate axes (x,y).  
Table 1 shows that the values of lateral tilts largely 
depend on the value of the shape parameter n and   

 show that the values of mean settlements closely 

coincide with each other irrespective of the number 

of boreholes (5 or 9) and parameter n values. The only 

exception is n=1 for the case of 9 boreholes. The tilts, 

both longitudinal and lateral, differ tangibly between 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Settlements and tilts of the structure for two test 
boreholes numbers 
 

Subgrade 
distribution 
shape 
parameter n  

Longitudinal 
tilt (along 
axis X) 

Lateral tilt 
(along axis 
Y)  

Settleme
nt of the 
center 
(сm) 

Number 
of test 
boreholes 

1 0.00191 0.00365 18.8 9 

2 0.00244 0.00552 22.9 

3 0.00255 0.00604 23.9 

4 0.00258 0.00620 24.3 

1 0.0322 0.00079 22.4 5 

2 0.00375 0.00113 23.8 

3 0.00384 0.00122 23.5 

4 0.00388 0.00124 23.5 

 
the cases of 5 and 9 boreholes, with the case of n=1, 
dropping out again of other more “typical” values. It 
means that voluntary unambiguous “inflation” of soil 
data over the whole volume of subgrade might be not 
representative.  
 
 CONCLUSIONS 
1. Uncertainties of GI data are an inevitable and 
essential factor that can result in major errors of 
subsoil-structure analysis. 
2. The relative volume and cost of GI are “infinitesimal” 
as compared to the capital cost of the project so it is 
profitable to increase the number of boreholes. 
3. GI data in boreholes are extrapolated (“inflated”) into 
a stratification on a few cross sections. Then engineers 
subjectively “inflate” this data further on – between 
cross sections.  
4. A new concept is proposed: how to apply “raw” data 
from boreholes directly (no “inflation” is required) to 
quantify subgrade-structure interaction. 
5. An analytical method is described to calculate stiff 
structure settlements and tilts, accounting for scatter of 
input GI soil data from boreholes.  
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