Опыт использования ANSYS при проектировании фундаментов

Болдырев Геннадий Григорьевич

Введение

• Цель доклада показать возможности программы ANSYS при решении различных задач в области геотехники используя опыт проектирования реальных объектов

Сертификация

- Международные стандарты
- ISO-9000 (включая ISO-9001 и ISO 9000-3)
- British standard BS 5750
- Lloyd's Register's software certification
- NAFEMS QA certification
- The TickIT initiative
- Стандарты Американской атомной промышленности
- 10CFR50 Appendix B
- ASME NQA-1
- The ANSI N45.2 series
- The ANS/IEEE series of QA and Software Standards
- ASME NQA-2, Part 2.7
- NUREG/CR-4640 Handbook of Software Quality Assurance

Techniques Applicable to the Nuclear Industry.

Сертификат Госатомнадзора России

- •Регистрационный номер ПС в ЦОЭП при РНЦ КИ №490 от 10.09.2002
- •Регистрационный номер паспорта аттестации ПС №145 от 31.10.2002

РЕГИСТРАЦИОННЫЙ НОМЕР ПС В ЦОЭП ПРИ РНЦ КИ 10.09.2002

дата регистрации

РЕГИСТРАЦИОННЫЙ НОМЕР ПАСПОРТА АТТЕСТАЦИИ ПС 31.10.2002 дата выдачи

НАЗВАНИЕ ПРОГРАММНОГО СРЕДСТВА: Программа ANSYS 5.2÷5.7

ЭВМ: Silicon Graphics, ПЭВМ Pentium

ОПЕРАЦИОННАЯ СИСТЕМА: IRIX, UNIX, Windows NT и последующие модификации

авторы: ANSYS Inc.

ОРГАНИЗАЦИЯ-ЗАЯВИТЕЛЬ:

ГУП ОКБМ им. И.И.Африкантова ГНЦ РФ ВНИИНМ им. А.А.Бочвара

организация-разработчик: ANSYS Inc

РЕШЕНИЕ СОВЕТА ПО АТТЕСТАЦИИ ПРОГРАММНЫХ СРЕДСТВ

Аттестовать бессрочно

приложение на 4 стр.

ПРЕДСЕДАТЕЛЬ СОВЕТА

О.М.Ковалевич

И.Р.Уголева

Недостатки ЛИРЫ и SCAD

- Неполная поддержка нелинейных задач (грунт, бетон, пластичность, ползучесть...)
- •Ограничения на размер задач
- •Не всегда удачная автоматическая генерация сеток
- •Отсутствие модулей оптимизации, теплообмена, газодинамики, пользовательского программирования...

Какие задачи может решать ANSYS ?

- Задачи прочности и динамики машиностроительных и строительных конструкций
- Задачи расчета полей температур
- Задачи динамики жидкости и газов
- Задачи электромагнитных и акустических полей

Особенности расчетов высотных зданий

- Большие размеры задач (сотни тысяч узлов)
- Трудоемкость подготовки моделей
- Необходимость совместного учета грунта и конструкции в нелинейной постановке
- Геометрическая нелинейность поведения большепролетных сооружений
- Учет физической нелинейности поведения бетона (ползучесть и т.д.)
- Сложный характер ветрового нагружения
- Большая динамическая составляющая ветровой нагрузки
- Необходимость анализа "нештатных" ситуаций в нелиней ней фефинамической постановке

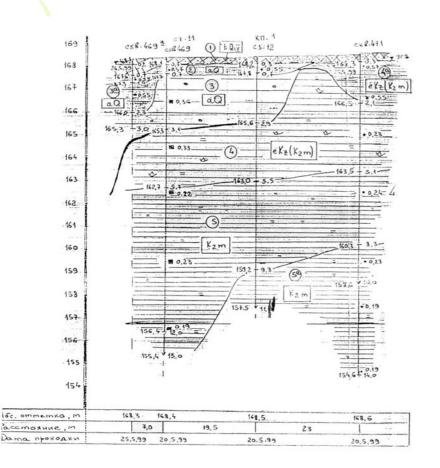
Почему ANSYS ?

- Наибольшее число легальных пользователей в России
- Наличие достаточного объема документации и литературы на русском языке
- Полнофункциональная версия на ПЭВМ
- Удобное пользовательское программирование, упрощающее локализацию
- Специальная конфигурация ANSYS/CivilFEM для задач строительства
- Специализированные модули ANSYS/CivilFEM для мостов, тоннелей, дамб, откосов
- Возможность решения связанных задач (учет теплообмена, аэродинамики...)

Возможно включение в ANSYS...

- Новые модели материалов (бетон, грунт и др.)
- Моделей пластичности, ползучести, набухания и др.
- Новые конечные элементы пользователя
- Алгоритмов оптимизации
- Новые методы решения системы дифференциальных уравнений
- Подпрограмм моделирования типовых конструкций
- Подпрограмм для ввода нелинейных характеристик конечных элементов

Примеры использования ANSYS


- Объекты проектирования
- Четырех этажный жилой дом по ул.Карпинского
- Два десяти этажных жилых дома по ул.Силикатной
- Шести этажный жилой дом по ул. Шмидта
- Пятнадцати этажный жилой дом по ул.
 З.Космодемьянской
- Спортивный корпус на 12000 м2
- Десяти этажный жилой дом по ул. Чкалова

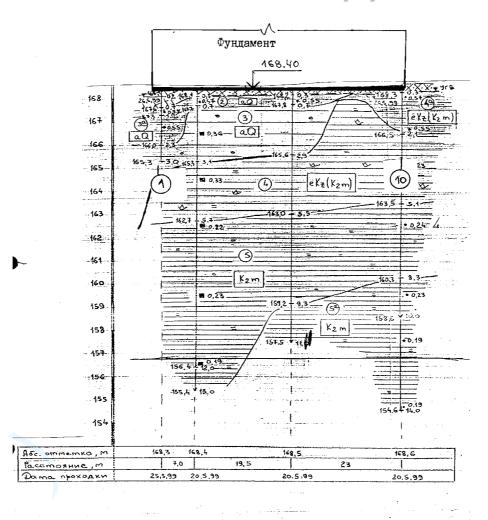
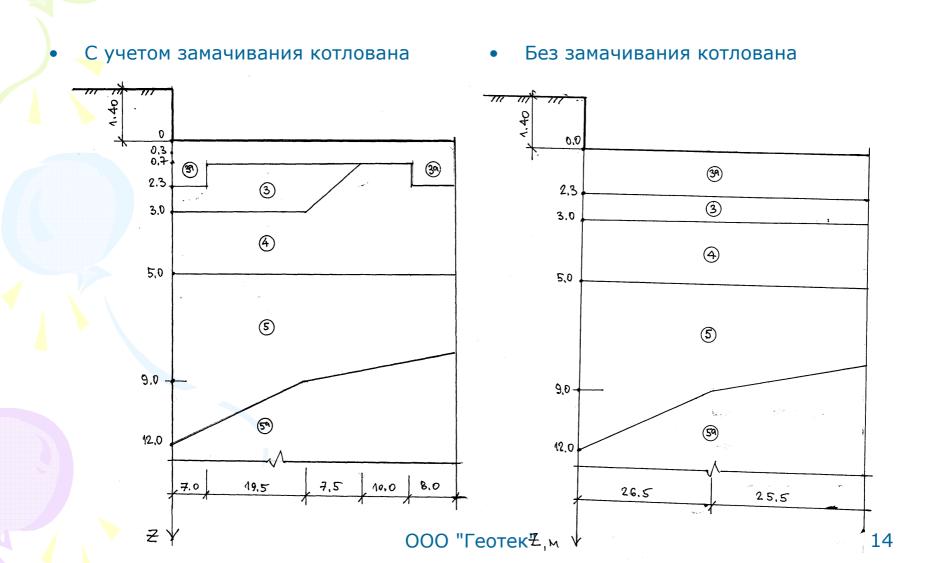
- Объекты исследования
- Усиление существующих фундаментов введением свай
- Метод управления неравномерностью деформации фундаментов
 - увеличение жесткости основания;
 - введение сеток из геотекстиля

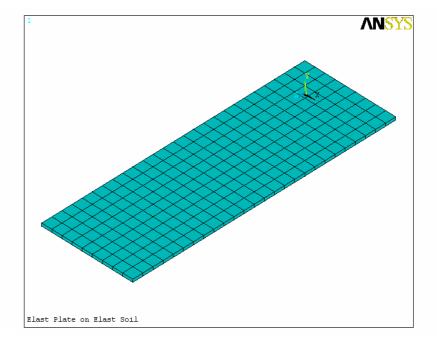
Четырех этажный жилой дом по ул.Карпинского

Инженерно-геологические условия

- 1. Насыпной слой мощностью 0,3-0,7 м
- **2.** Глина мягкопластичная 0-0.3 м. Физикомеханические показатели грунта: уд. вес грунта 16.7 кH/м3; e=1.15; Sr=0.84; IL=0.55; c=11/10 кПа; угол внутр. трения -7/7 град.; E=3.5 МПа.
- 3. Глина тугопластичная 0 -2,4 м. Физико-механические показатели грунта: уд. вес грунта 15,8 кH/м3; е = 1,44; Sr = 0,69; IL = 0,36; с = 19/17 кПа; угол внутр. трения 14/13 град.; E = 6,0 МПа.
- 3а. Глина мягкопластичная 0 -1,3 м. Физико-механические показатели грунта: уд. вес грунта 16,7 кH/м3; е = 1,38; Sr = 0,97; IL = 0,58; с = 11/10 кПа; угол внутр. трения 7/7 град.; E = 3,5 МПа.
- 4а. Глина мягкопластичная 0 -1,8 м. Физико-механические показатели грунта: IL = 0,56; $c = 18/12 \text{ к}\Pi a$; угол внутр. трения 15/13 град.; $E = 3,5 \text{ M}\Pi a$.
- 4. Глина тугопластичная и полутвердая 2,6-3 м. Физикомеханические показатели грунта: уд. вес грунта 16,2 кH/м3; e=1,52; Sr=0,94; IL=0,18; c=40/38 кПа; угол внутр. трения -19/19 град.; E=17,0 МПа.
- 5, 5а. Глина полутвердая. Физико-механические показатели грунта: уд. вес грунта 16,3 кH/м3; е = 1,41; Sr = 0,91; IL = 0,12; с = 38/36 кПа; угол внутр. трения 19/19 град.; E = 25; 42 МПа.

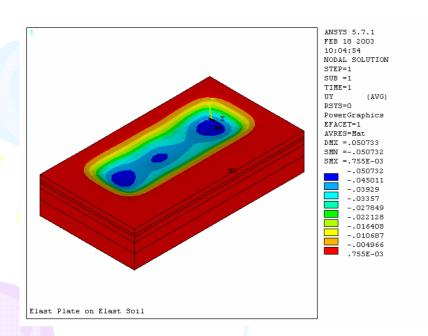
Схема «посадки» фундамента

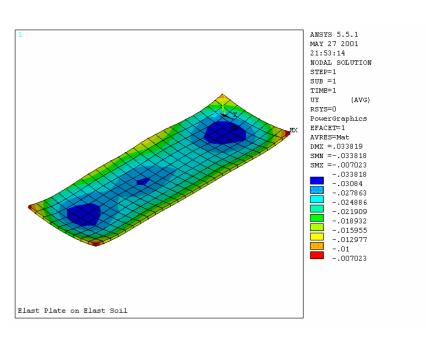



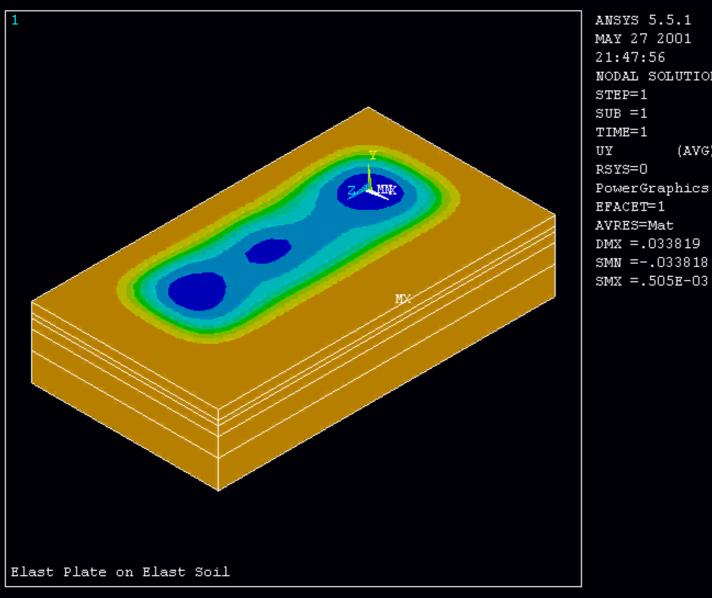

Рис. 2. Схема посадки фундамента

Мощность слоев грунта

Аппроксимация расчетной области массива грунта и плиты

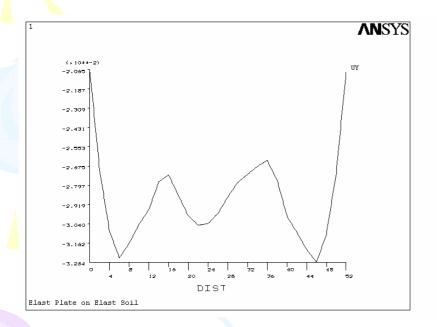

- Конечные элементы SOLID45
- Размер 2х2 м
- Elast Plate on Elast Soil
- Конечные элементы SHELL63
- Размер 2х2 м

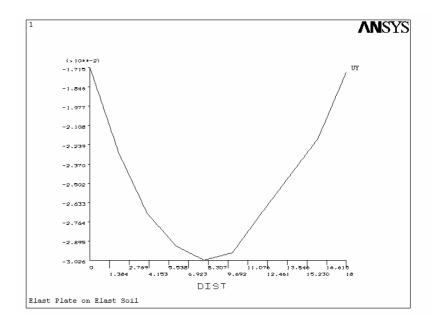



Нагрузки на плиту

Деформация массива и плиты

- Вертикальная деформация Вертикальная деформация прогиб/выгиб плиты основания

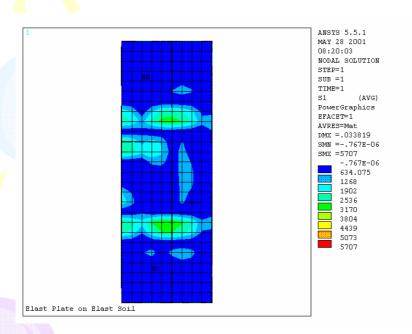


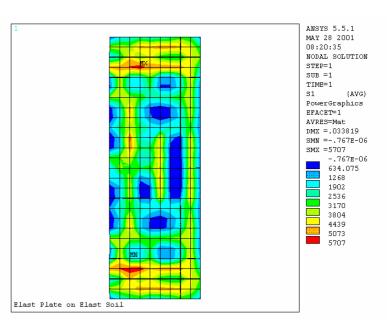

ANSYS 5.5.1 MAY 27 2001 21:47:56 NODAL SOLUTION STEP=1 SUB =1 TIME=1 UY (AVG) RSYS=O PowerGraphics EFACET=1 AVRES=Mat DMX = .033819smn = -.033818

Деформация плиты

• Продольном направлении

• Поперечном направлении

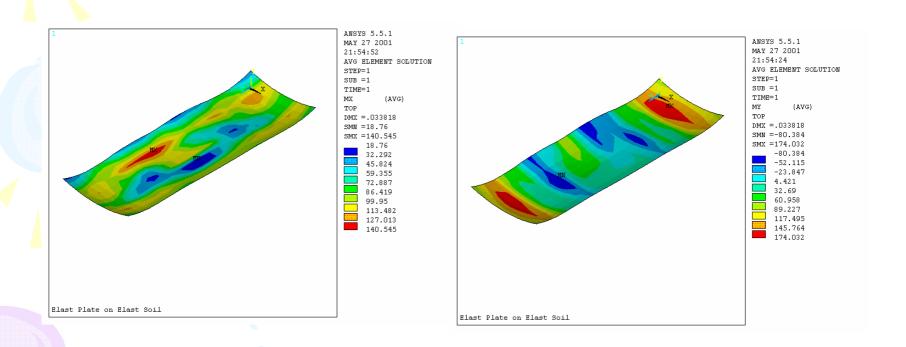


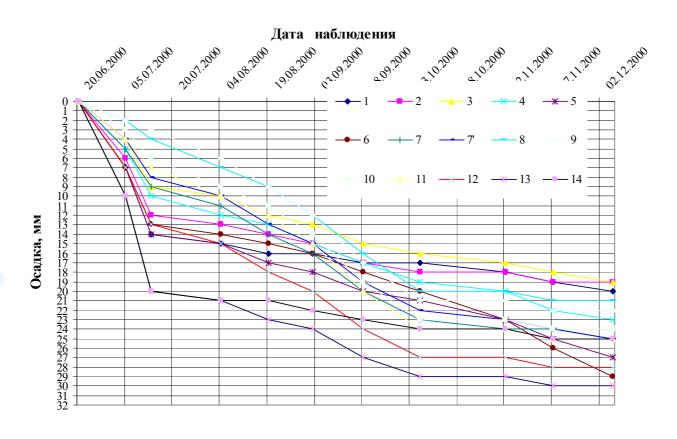


Наибольшие главные напряжения

• Верхнем сечении

• Нижнем сечении




Внутренние усилия

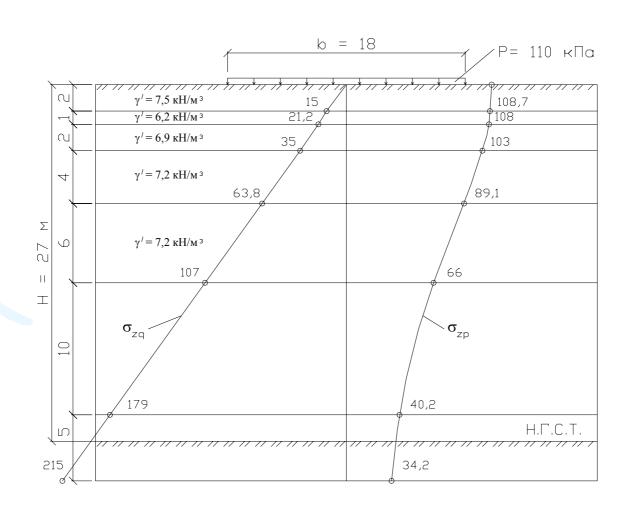
• Момент Мх

• Момент Му

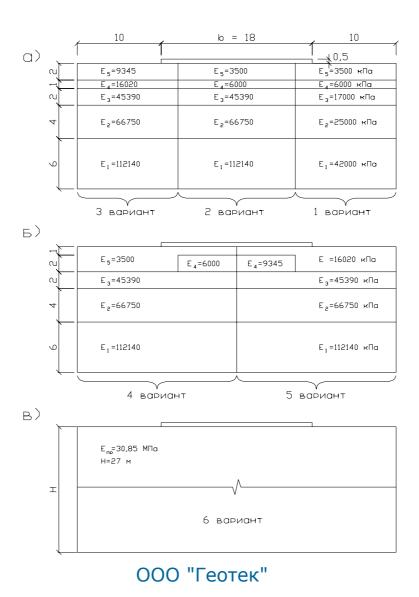
Наблюдения за осадкой плиты

Электропрогрев бетона

Выводы


- Расчетные значения осадок и прогиба плиты не превышают нормативных значений.
- Наблюдаемые значения осадки плиты и характер ее деформации согласуются с представленными расчетами как количественно, так и качественно.

К выбору расчетной схемы основания плитного фундамента


В нормативной литературе расчет ленточных и плитных фундаментов, работающих на изгиб рекомендуется выполнять, применяя расчетную схему основания в виде:

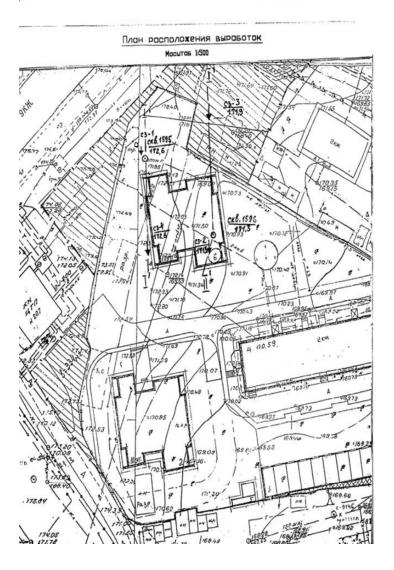
- линейно-деформируемого полупространства с условным ограничением глубины сжимаемой толщи
- линейно-деформируемого слоя.
- основание, подчиняющееся гипотезе постоянного или переменного коэффициента постели

Линейно-деформируемое полупространство с условным ограничением глубины сжимаемой толщи

Расчетные схемы грунтовой толщи основания

Расчетные значения осадки и усилий

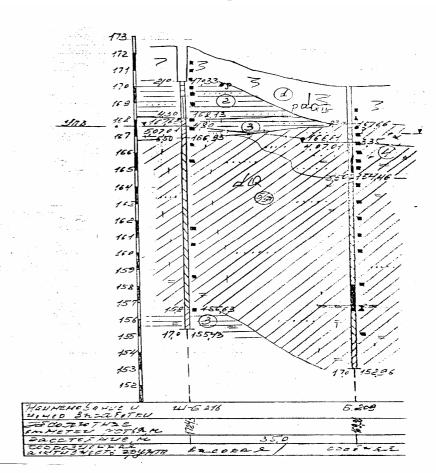
Инжгеолог. условия (модель грунтовой тощи)	Максималь- ная осадка плиты, см	Мин./Мах. значение момента Мх	Мин./Мах. значение момента Му	Мин./Мах. значение момента Мху	Коэф. по нагрузке
Вариант 1	3,38	+18,8+140,5	-23,8+174,0	-27,9+29,5	1,0
Вариант 2	1,92	-69,4 +116,6	-114,8+139,5	-41,2+33,3	1,0
Вариант 3	1,35	-68,3 +102,7	-100,0+111,2	-37,7+32,2	1,0
Вариант 4	4,12	-75,7+141,0	-145,3+191,6	-50,7+52,2	1,0
Вариант 5	2,20	-75,6+125,8	-120,8+148,6	-41,5+38,47	1,0
Вариант 6	3,27	-37,4+126,3	-95,6+143,0	-38,1+37,2	1,0
Вариант 7	5,07	-56,2+189,5	-143,4+214,5	-57,1+55,8	1,5


Выводы

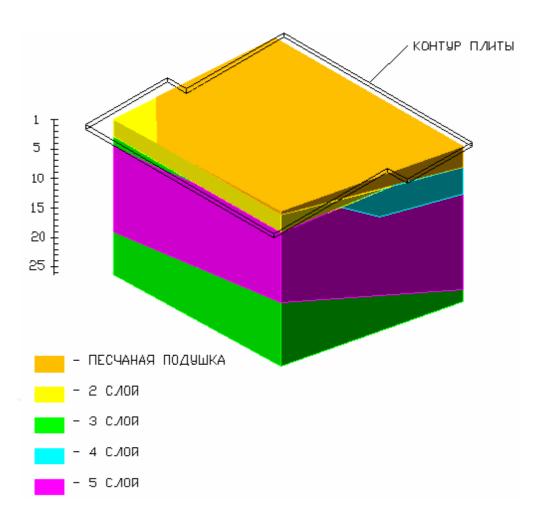
- Осадка фундаментной плиты на слоистом основании, при одной и той же глубине сжимаемой толщи, зависит от принятой методики определения параметров модуля деформации и коэффициента Пуассона. В расчетах с использованием компрессионного модуля деформации осадка больше, по сравнению со случаем использования приведенного модуля деформации и коэффициента Пуассона.
- Характер распределения внутренних усилий (Мх, Му) в конструкции фундаментной плиты зависит от типа расчетной схемы грунтовой толщи основания и ее деформационных параметров. Переход от компрессионного модуля (вариант 1) к приведенному модулю деформации с учетом коэффициента только количественно, но и качественно.
- Максимальная осадка плиты для случая неоднородного слоистого основания с компрессионным модулем деформации (вариант 1) и однородного основания с приведенным модулем деформации (вариант 6) оказались практически одинаковыми. Значения изгибающих моментов различны. В особенности для момента Мх.

Жилой комплекс по ул. Силикатной

Инженерно-геологические условия


В основании проектируемого жилого дома на глубину до 2,1 м (см. рис. 1) залегает насыпной грунт, глина, кирпич, строительный мусор.

Вторым слоем является глина полутвердой и тугопластичной консистенции, мощность которой изменяется от 1,3 до 2,2 м. Физико-механические показатели грунта: удельный вес грунта - 18,7 кH/м3; e=0.81; Sr=0.87; IL=0.25; c=37/27 кПа; угол внутреннего трения – 17/15 град.; E=12/11 МПа.


Третий слой – глина мягкопластичной консистенции, мощностью от 1,2 до 1,7 м. Физиком механические показатели грунта: удельный вес грунта - 18,2 кН/м3; е = 0,98; Sr = 0,97; IL = 0, с = 21 кПа; угол внутреннего трения – 12 град.; = 4 МПа.

Четвертый слой – суглинок полутвердый, тугопластичный, мощностью 3,2 м. Физикомеханические показатели грунта: удельный вес грунта - 18,5 кН/м3; e = 0,77; Sr = 0,80; IL = 0, c = 28/33 кПа; угол внутреннего трения – 21/17 град.; E = 16/14 МПа.

Пятый слой – суглинок от мягкопластичной до тугопластичной консистенции, мощностью от 8,3 11,5 м. Физико-механические показатели грунта: удельный вес грунта - 18,4 кH/м3; e = 0.88; Sr = 0.96; IL = 0.68/0.92; c = 15/8 кПа; угол внутреннего трения – 17/11 град.; E = 5/5 МПа.

Объемная модель грунтовой толщи

Выбор варианта фундаментов

- Основание сложенное представленными грунтовыми условиями следует отнести к категории «слабых», так как они преимущественно сложены глинистыми грунтами с модулем деформации Е = 4-5 МПа. Исходя из этого основными вариантами фундаментов могут быть свайный ростверк с длиной свай более 14 м или плитный фундамент
- Принятие решения об устройстве висячих свай длиной 12 м невозможно, так как при определении несущей способности сваи в СНиП 2.02.03-85 /2/ отсутствуют значения расчетного сопротивления под нижним концом сваи (табл. 1) при IL > 0.6. В пятом слое грунта IL = 0,68/0,92.
- Исходя из этого основным вариантом может быть плитный фундамент или фундамент из перекрестных лент.
- Принимая решение об устройстве данных фундаментов необходимо заменить насыпной грунт или песчаной подушкой или местным непучинистым глинистым грунтом.

Требования СНиП 2.02.01-83

- Расчетное сопротивление глинистого грунта, R, для проектируемого фундамента из перекрестных лент на наиболее нагруженном участке по осям (5), (6), приняв ширину ленты равной 4 м и используя принятые показатели суглинка грунтовой подушки
- R=(1,2x1,0/1,0)[0,56x4,0x9,04+3,24x1,35x9,04+(3,24-1)0,75x9,04+5,84x23,0]== 243,0 $\kappa\Pi a$
- При нагрузке равной (996 + 0,5х4х24) = 1044,0 Кн/м (см. табл. 1, прил. 1), давление под подошвой составит 261,0 кПа, что несколько более расчетного сопротивления грунта подушки.
- Для второго варианта фундамента в виде плиты размером 33х33 м среднее давление на грунт основания равно 150 кПа. Определим расчетное сопротивление грунта при ширине подошвы b = 33 м.
- $R=(1,2x1,0/1,0)[0,56x0,467x33,0x9,04+3,24x1,35x9,04+(3,24-1)0,75x9,04+5,84x23,0] = 312,3 \ \kappa\Pi a.$
- Условие P < R , удовлетворяется.

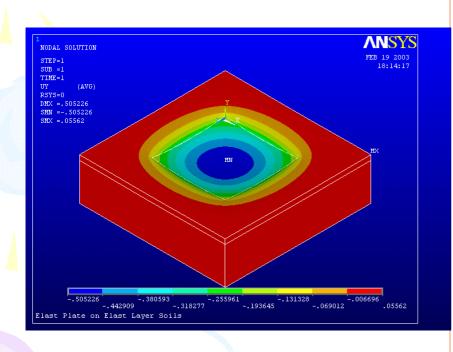
Расчет осадки фундамента

- Определим осадку плитного варианта фундамента по схеме линейно деформируемого слоя
- Толщина линейно-деформируемого слоя Н для оснований сложенных пылевато-глинистыми грунтами определяется из выражения
 - H = Hs + hcl/3 = (Ho + b)kp + hcl/3 = (6 + 0.1x30)0.85 + 18/3 = 13.65 M.
- Учитывая то, то граница сжимаемой толщи находится в грунтах с модулем деформации E = 5 МПа, толщину линейно-деформируемого слоя Н увеличиваем до 18 м.
- Среднее давление на основание под подошвой плитного фундамента размером в плане 33х33 м равно 150 кПа. Принимая его за дополнительное давление и используя табл. 4 прил. 2 СНиП определяем коэффициенты кс, кm, кi и расчетную величину осадки:
 - $S = (150 \times 30,0 \times 1,4/1,0)[0,033/11000 + (0,1 0,033)/5000 + (0,2 0,1)/5000 + (0,299 0,20)/5000 + (0,380 0,299)/5000] = 0,49 \text{ M}.$
- Расчетное значение осадки более предельно допускаемой (прил. 4 СНиП), равная 22,5 см для плитных фундаментов с армированием кирпичной кладки несущих стен.
- Таким образом, фундаментная плита размером 33х33 м в плане на естественных грунтовых условиях при нагрузке р = 150 кПа не проходит из условия расчета по деформации основания.

Что делать?

Уменьшить осадку можно следующим образом:

- Уменьшить нагрузки на основание, снизив этажность жилого дома.
- Увеличить толщину грунтовой подушки с 2 до 4 6 м.
- Изменить свойства грунта путем искусственного улучшения грунтов основания.
- Применить вариант плиты на свайном поле.
- Рассмотрим возможность применения подобных технических решений для уменьшения деформации основания. С целью удобства и большей наглядности все последующие расчеты будем выполнять с использованием численных методов, а именно метода конечных элементов, используя программу ANSYS.


Определение мощности сжимаемой толщи

- Мощность сжимаемой толщи можно определить согласно СНиП двумя методами. Методом послойного суммирования и методом линейно-деформируемого слоя.
- Выполненные ранее расчеты осадки плитного фундамента с использованием модели линейно-деформируемого полупространства (метод послойного суммирования) показывают на то, что сжимаемая толща грунтов при учете взвешивающего действия грунтовых вод и р = 150 кПа равна 40 м. Толщина линейно-деформируемого слоя Н при ширине фундамента b > 10 м равна 13,65 м, а фактическая сжимаемая толща грунтов по инженерно-геологическому разрезу равна 18 м. Поэтому в дальнейших расчетах принимаем мощность сжимаемой толщи не менее 40 м.

Допущения в расчетах

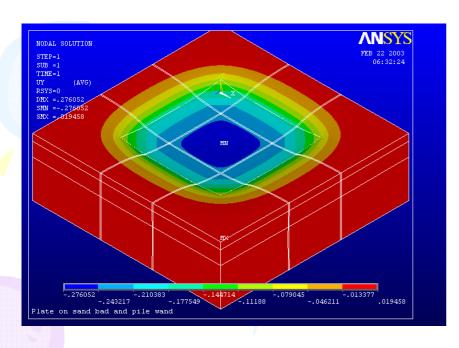
- 1. Основание является линейно-деформируемой средой. Все напряжения и деформации определяются как для линейно-деформируемого полупространства. Деформационные свойства среды определены модулем деформации и коэффициентом Пуассона.
- Так как давление под подошвой фундамента менее расчетного сопротивления грунта, то в последующих расчетах возникновение и развитие пластических деформаций не учитывается. Решение проводится по «упругой схеме».
- 2. На поверхности контакта фундамента с грунтом приняты условия полного «слипания». Касательные напряжения отсутствуют.
- 3. Размеры расчетной области массива грунта приняты из условия. Глубина более расчетного значения мощности сжимаемой толщи, 50 60 м. Ширина и длина, равны 3 b.
- 4. Нагрузка на фундамент равномерно распределенная, давление интенсивностью $p=150\ k\Pi a$.
- 5. Материал фундамента, бетон класс B20 с модулем упругости E = 23500 MПа.

Фундаментная плита на естественном основании

• В плане 33х33 м, p = 150 кПа

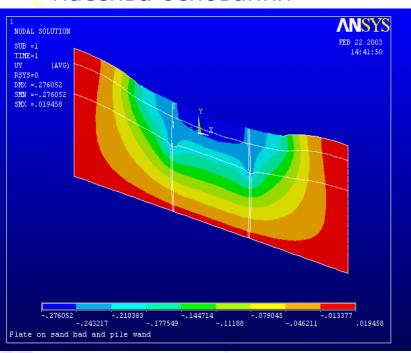
Макс. осадка 50,5 см

В плане 24х24 м, р = 200 кПа

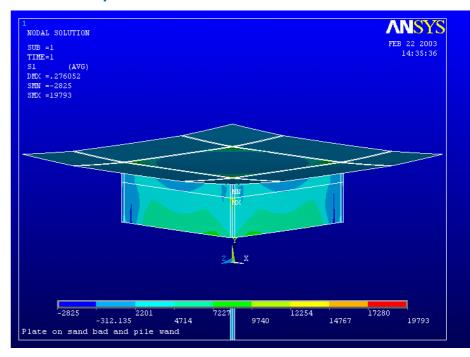

Макс. осадка 37,8 см

- Оба варианта не проходят по деформации основания
- В плане 40х40 м, р = 100 кПа

Макс. осадка 25,2 см

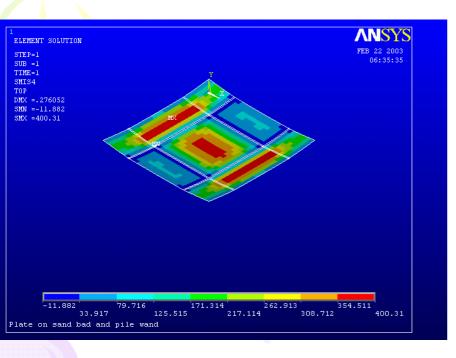

Фундаментная плита на свайном основании

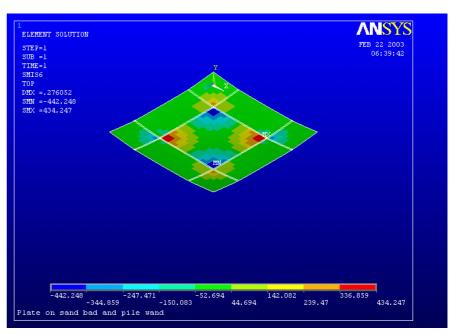
 Деформация плиты и основания



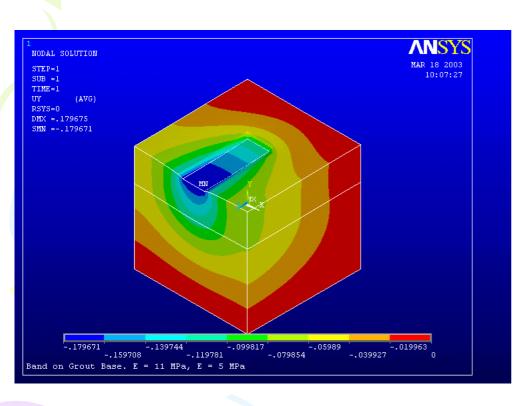
• Рассмотрим вариант фундамента в виде конструкции из плиты толщиной 50 см, размером в плане 33х33 м с введением свай сечением 30х30 см и длиной 8 м. Сваи жестко соединены с телом фундамента и представляют из себя конструкцию в виде «стена в грунте», когда они погружены одна к другой без разрывов. Сваи забиты по периметру квадрата размером 20х20 м.

 Вертикальная деформация массива основания

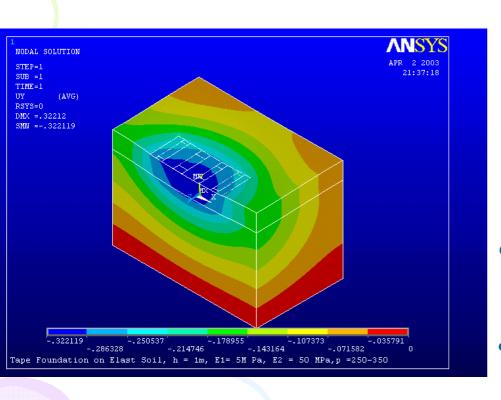

 Наибольшее главное напряжение



Внутренние усилия

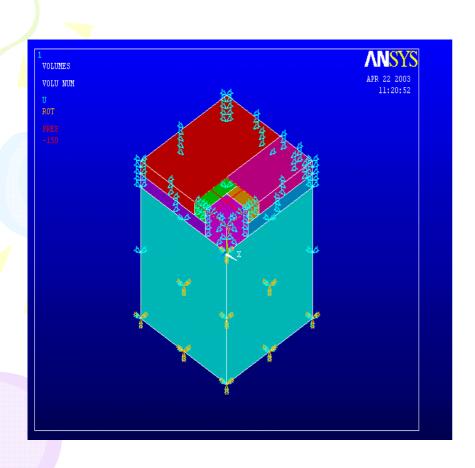

• Момент Мх

• Крутящий момент Мху



Ленточный фундамент на песчаной подушке

Песчаная подушка мощностью 6 м с модулем деформации 11,0 МПа заменяет полностью первый слой глинистого грунта и частично второй слой. Модуль деформации второго слоя равен 5 МПа. Ширина ленточного фундамента принята равной 4 м и основание нагружено давлением, р = 260 кПа. Данное давление соответствует погонной нагрузке в 996 кН/м на ось 5. Вследствие симметрии задачи, на всех рисунках ниже, приведена только половина массива грунта. Полная длина ленты равна 20 м. Толщина фундамента равна 50 см.

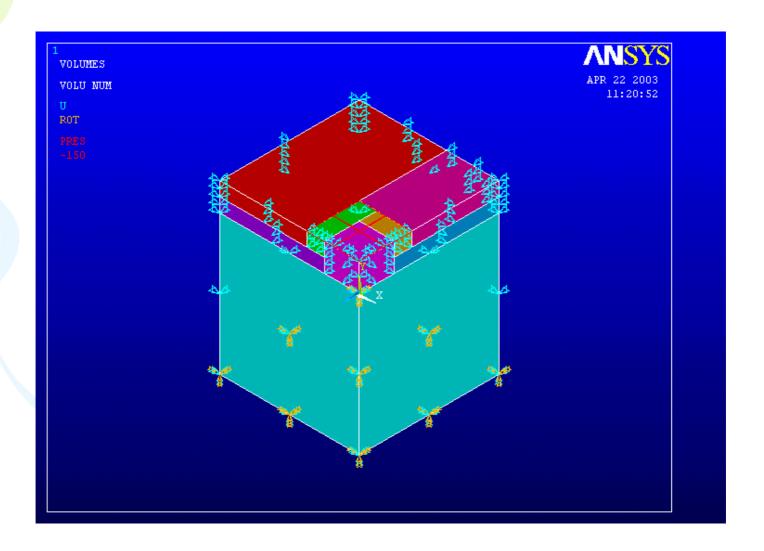

Ленточный фундамент из перекрестных лент

Песчаная подушка заменена щебеночной, также толщиной 6 м, но с модулем деформации 50 МПа, ниже залегает глинистый грунт с модулем деформации 5 МПа. Толщина ленты равна 1,0 м.

- Максимальная осадка равна 32,2 см. Осадка изменяется от 25 до 32,2 см.
- Изгибающий момент Мх изменяется от 14 до 140 кНм, Му от 9 до 724 кНм.

Фундаментная плита на искусственном основании из грунтоцементных свай

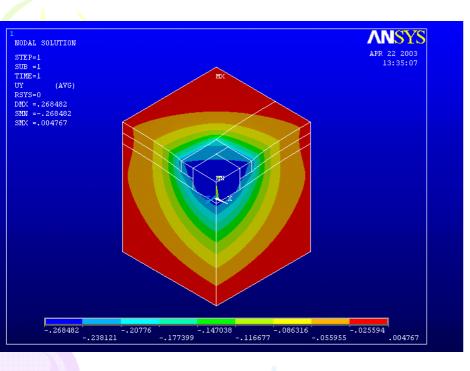
• Расчетное сопротивление

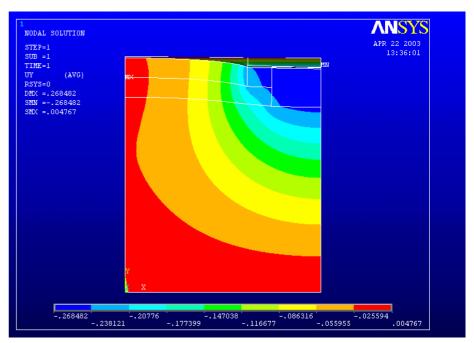

Ra = gb + (k1 k Rco /kf - gb) [(1 + Ef Af /(Est Ast)/(1 + Af Ast)] = 220
$$\kappa \Pi a$$

- Модуль деформации
 - бетон В10
 - 930 свай с шагом 1 м диам. 350 мм

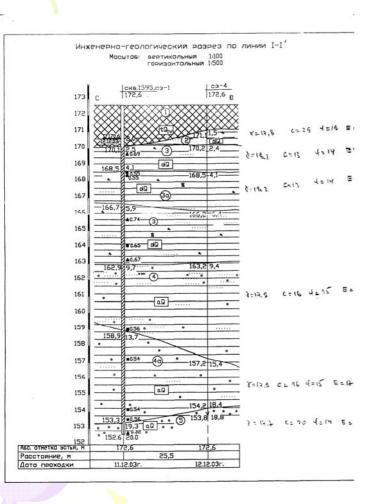
$$Ea = Efi Af/A + Esti Ast/A$$

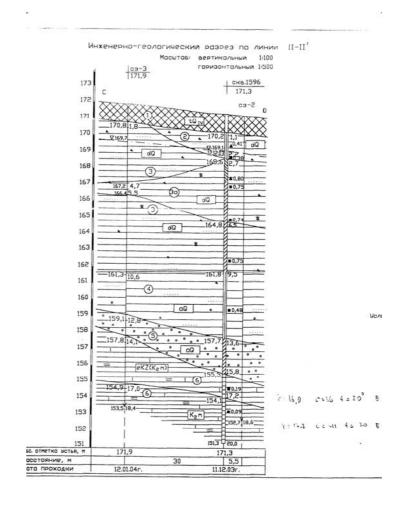
Ea =
$$(4 - 5)$$
 Ef = 50 Mna

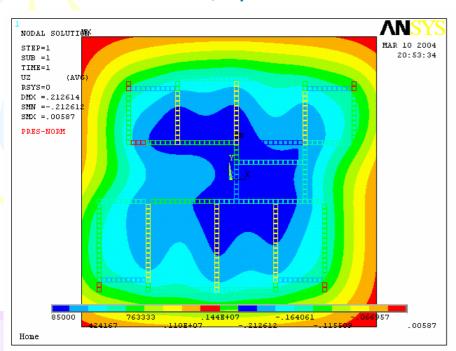

Модель основания

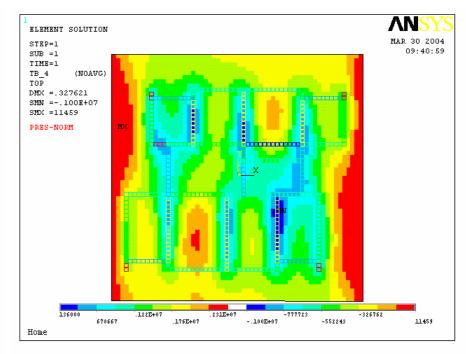


Деформация основания


• 3-х мерное отображение

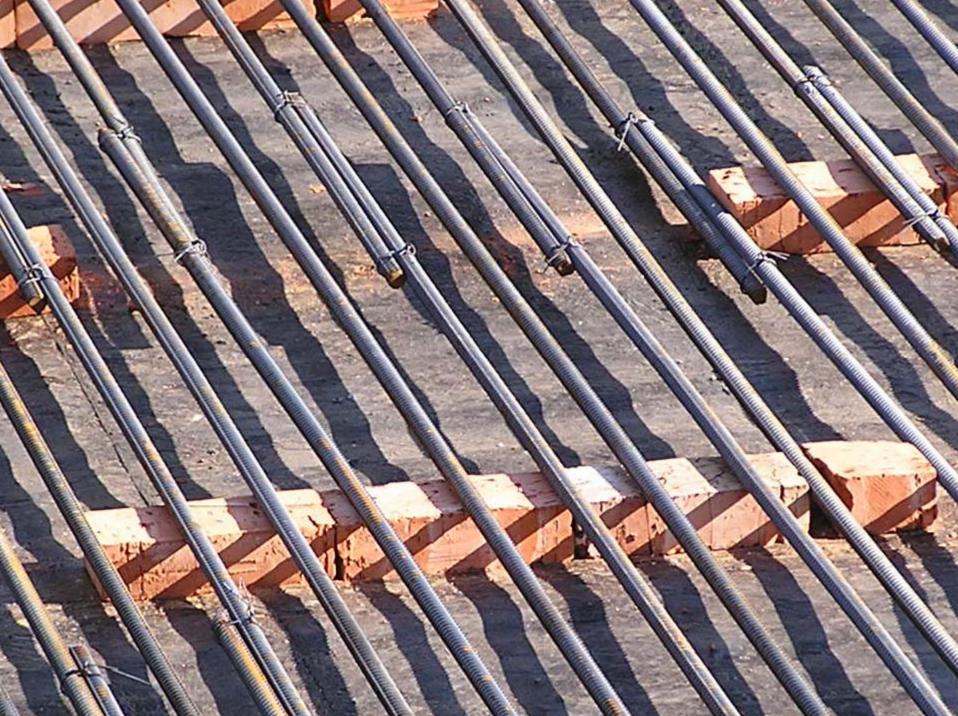



Инженерно-геологические условия второй площадки



Деформация и моменты

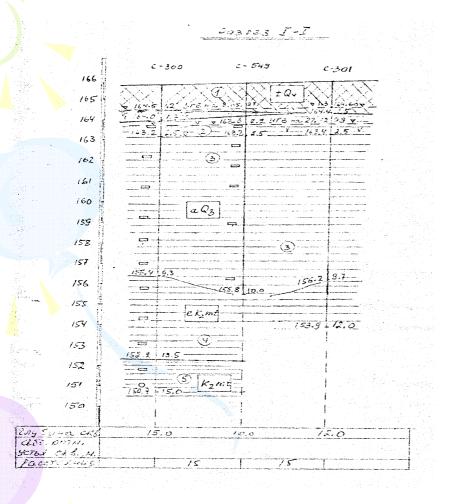
 Деформация основания/прогиб плиты



• Изгибающий момент Мх в Нм

Устройство фундамента

Жилой дом по ул. Шмидта

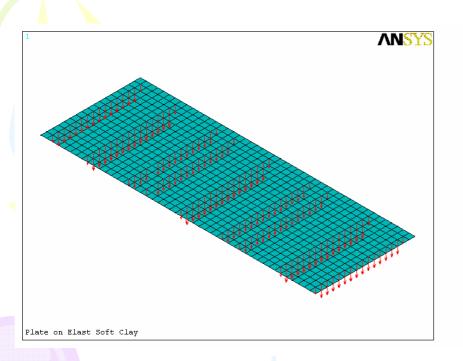


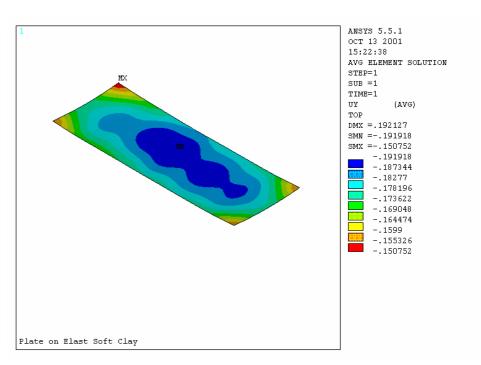
000 "Геотек"

Варианты фундаментов

- свайный фундамент из призматических свай, погружаемые в лидерные скважины;
- фундаментная плита с промежуточной песчаной подушкой;
- фундаментная плита на промежуточных свайных опорах;
- фундаментная плита на естественном основании.

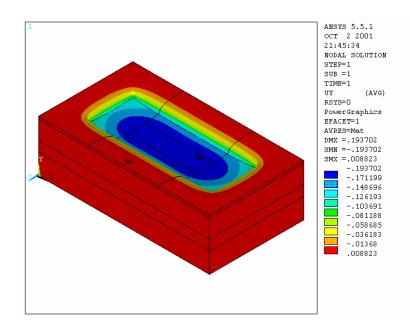
Инженерно-геологические условия



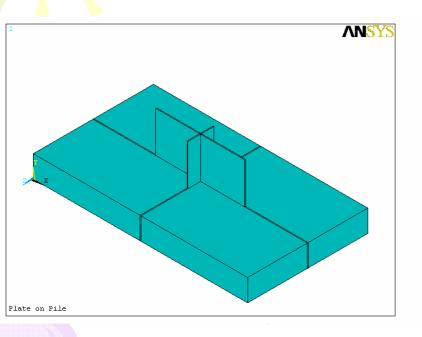

- В основании дома от отметки подошвы фундамента 164,15 м на глубину 2-3 м залегает глина желтовато-серая, слабозаторфованная, туго и мягкопластичная. Физико-механические свойства глины следующие: =15,6 кH/м3; =110; c=11 кПа; E=3,0 МПа; IL=0,3-0,69.
- Ниже залегает глина желто-серая, мягко до текучепластичной, с примесью органики, мощностью 6,8-7,2 м, со следующими физикомеханическими свойствами: =16,7 кH/м3; =110; с= 12 кПа; E=3 МПа; IL=0,71 0.80.
- Ниже вскрыты глины темно-зеленовато-серые, тугопластичные, мощностью до 4,2 м, со следующими физико-механическими свойствами: =16,7 кH/м3; =200; c= 36 кПа; E=14 МПа; IL=0,06 0,14.
- Эти глины подстилаются глиной темно-серой, полутвердой, слюдистой, с вскрытой мощностью до 7 м. Физико-механические свойства глины следующие: =16,2 кH/м3; =200; c=52 кПа; E=29,0 МПа; IL=0,06-0,07.
 - Анализ инженерно-геологических условий показывает, что у поверхности залегают глинистые грунты, которые имеют низкие деформационные и прочностные свойства.
- В связи с этим ПО «Гипромаш» в 2001 году был принят вариант монолитного ленточного фундамента на песчаной подушке, мощностью 2,2 м /5/.

Результаты расчета

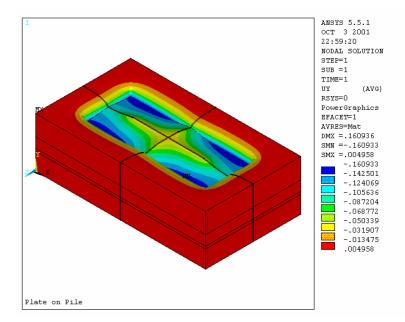
• Нагрузка на плиту



Расчет с введением локальной песчаной подушки


- Как показано на предыдущем слайде плита имеет максимальную деформацию в центре своей опорной площади. Поэтому, если под ее центральной частью, заменить слабый грунт на более прочный, менее деформируемый или иными словами более жесткий, то прогиб плиты должен уменьшиться.
- Такая замена была выполнена глубиной 1 м из песка мелкого с модулем деформации E = 28 МПа, по центру плиты, размером в плане 7х30 м
- Замена части грунта песчаной подушкой привела к уменьшению деформации плиты в центре с 20,3 см до 19,3 см

Равномерная нагрузка р = 100 кПа



Расчет с устройством свайного поля

Модель основания

• Деформация плиты и основания

Внутренние усилия

(AVG)

-409.132

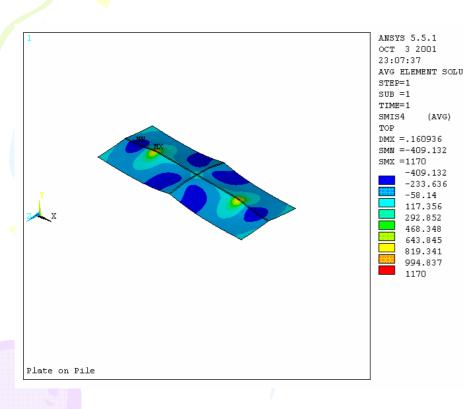
-233.636

-58.14

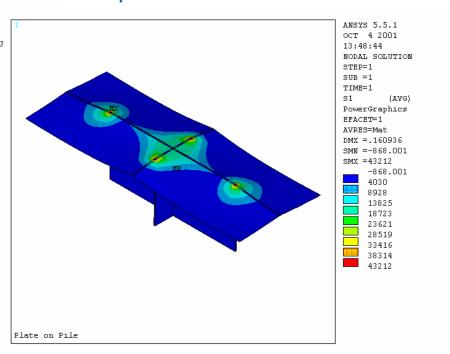
117.356

292.852

468.348

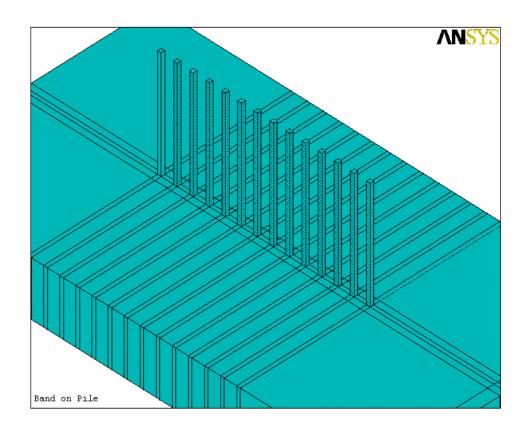

643.845

819.341

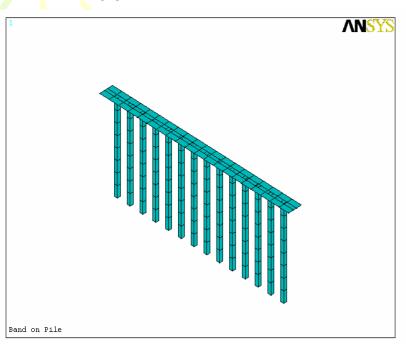

994.837

1170

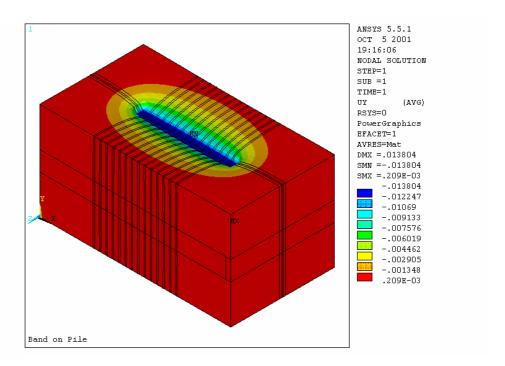
Момент Мх


Наибольшее главное напряжение

Влияние жесткости ростверка

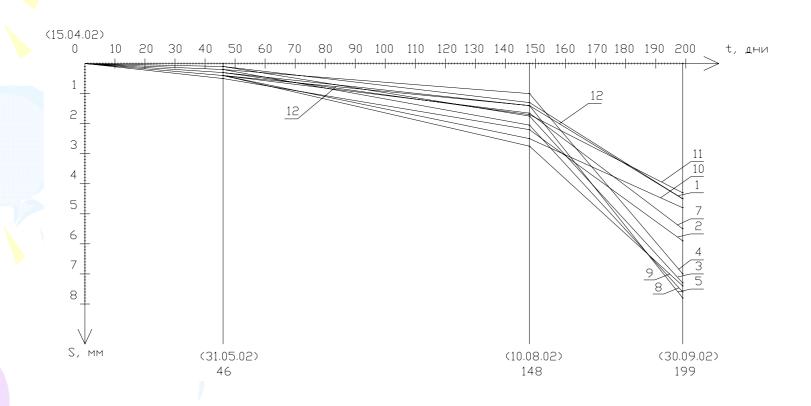

- Ширина ростверка 1,3 м, высота 0,5 м.
- Длина свай 8 м, т.е. сваи прорезают слабые слои грунта, но практически не заходят в тугопластичные глины.
- Шаг свай 1,0 м. Нагрузка на ростверк равна 600 кн/м.

• Модель основания



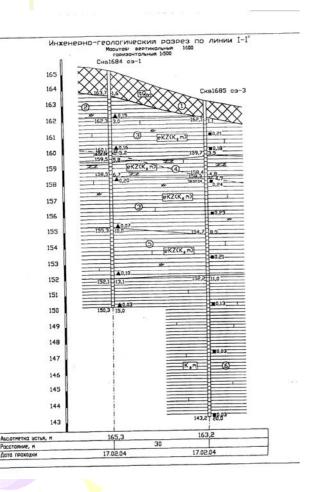
Модель и деформации

 Модель свайного фундамента


• Деформация массива грунта

Технико-экономическое сравнение вариантов

Вариант 1	Свайный фундамент	20841
Вариант 2	Плитный фундамент	22744
Вариант 3	Ленточный фундамент с песчаной подушкой	37596


Наблюдения за осадкой фундамента

15 этажный жилой дом

Инженерно-геологические условия

- На площадке строительства выделено 6 инженерногеологических элементов.
- Насыпные грунты (ИГЭ-1) и глина элювиальная тугопластичная (ИГЭ-2) прорезаются конструкцией фундамента, а его подошва закладывается на отметке 160,85 в слое глин элювиальных полутвердых (ИГЭ-3).
- Модуль деформации глины ИГЭ-2 определен по результатам лабораторных компрессионных испытаний в интервале 0,1 0,2 МПа с переходным коэффициентом т = 3,1, определенный по результатам сопоставлений полевых штамповых испытаний с лабораторными компрессионными.
- Для ИГЭ-3,4,5,6 модуль деформации рассчитан с переходным коэффициентом m = 4,6.
- Грунтовые воды находятся на отметке 158,4 160,1 м.

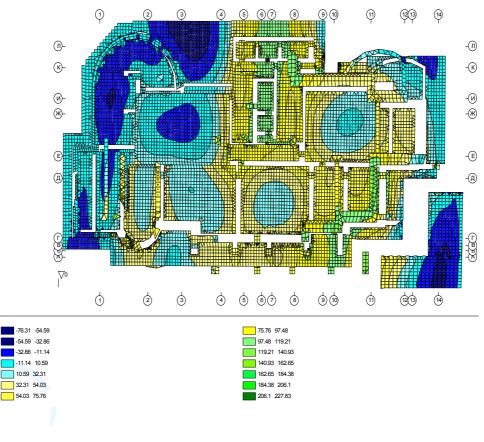
Физико-механические свойства грунтов

	Характеристики грунта				
Наименование грунта	Удель ный вес, кН/м ³	Модуль дефор- мании, МПа	Угол внутр. трения, град	Сцепле- ние, кПа	Показ. теку- чести
Почвенный слой, глинистый (ИГЭ-1)	15,00				
Глина элювиальная, тугопластиная (ИГЭ-2)	16,50	5,5	18	37,0	0,27
Глина элювиальная полутвердая (ИГЭ-3)	16,40	16,0	18	44,0	0,22
Глина элювиальная полутвердая, с прослойками мергеля	15,70	26,0	19	44,0	0,16
Глина элювиальная полутвердая, трещиноватая (ИГЭ-5)	17,20	18,0	20	45,0	0,21
Глина коренная полутвердая (ИГЭ-6)	17,30	26,0	20	55,0	0,12

Выбор расчетной схемы основания

- Статический расчет фундаментной плиты выполнен с использованием трех расчетных схем основания.
- 1. Основание в виде линейно-деформируемого полупространства, с осредненными в пределах сжимаемого слоя Н коэффициентом Пуассона грунта и модуля деформации грунтов основания Епр с корректирующим множителем mE, равным:

(1)


- где коэффициент, определяемый по табл. 13 /Руководство .../ в зависимости от отношения сторон фундамента и толщины сжимаемого слоя основания к полуширине фундамента; коэффициент, определяемый по табл. 13 для в зависимости от отношения сторон фундамента.
- 2. Основание (Винклера Фусса), подчиняющееся гипотезе постоянного коэффициента постели /1/, с коэффициентом постели, определяемым по формуле

$$C = P/S = 1155 \text{ kH/m3}$$

- где P среднее фактическое давление на грунт под подошвой фундамента; S средняя осадка, определяемая по формуле (1) приложения 2 СНиП.
- 3. Основание в виде линейно-деформируемого полупространства без осреднения коэффициента Постели по слоям грунта и модуля деформации без использования коэффициента mE и приведения модуля деформации к среднему значению в пределах сжимаемой толщи.

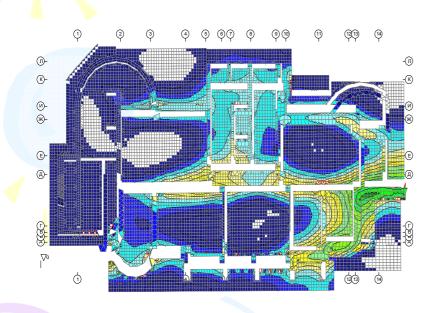
Расчет с использованием гипотезы коэффициента постели

111

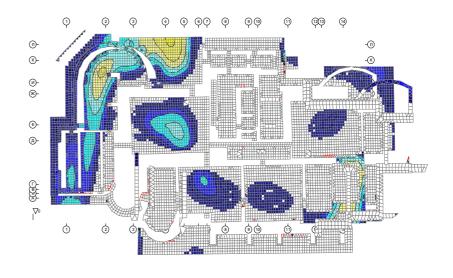

МХ Загружение 1 (Т*м/м)

Изгибающий момент Мх

Лира (-54,5 +227,8)



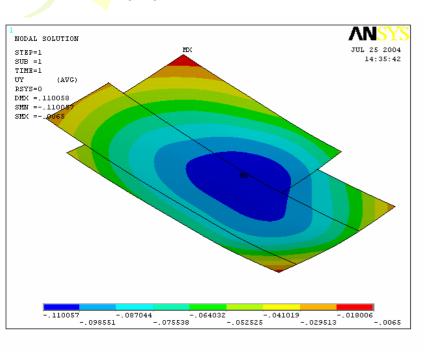
• ANSYS (-198,1 +1929)

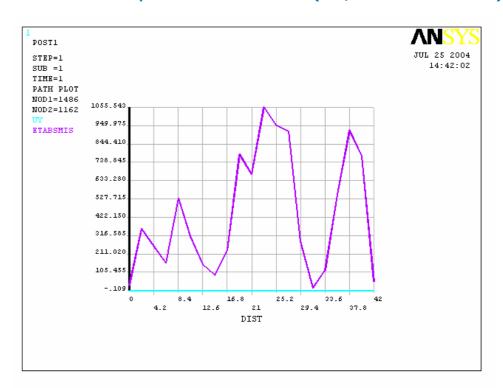

Арматура

Нижняя по оси У (6-81 см2/м)

44.02 50.3

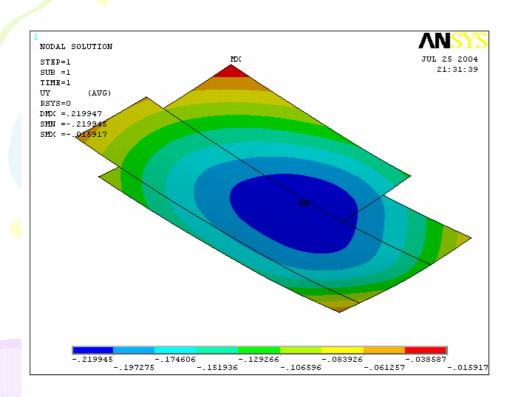
Вехняя по оси X (2 – 30 см2/м)

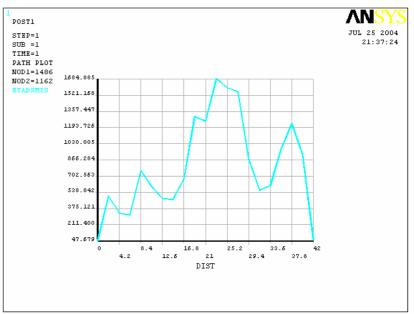



Арматура. AS2 Верхняя по X (cm2/m)

37.73 44.02

Расчет фундаментной плиты с использованием гипотезы линейно-деформируемого полупространства и приведенным модулем деформации


Деформация плиты. Smax=11см • Эпюра Мх по оси E (-0,1+ 1055 кНм)

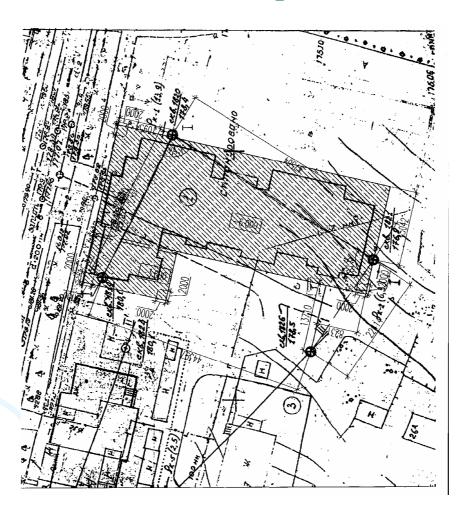


Расчет фундаментной плиты с использованием гипотезы линейно-деформируемого полупространства на неоднородном грунтовом основании

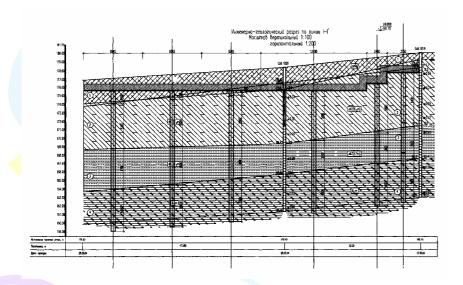
Деформация плиты. Smax=22cм • Эпюра Мх по оси E (47 − 1684 кНм)

Сравнение результатов расчета

Наименование расчетной схемы основания	Максималь- ная осадка, S, см	Момент М _х , кНм	Момент М _у , кНм	Поперечная сила Q_x , кН	Попереч- ная сила Q _y , кН
Винклера – Фусса	31,5	-545,9 – 2278,3	-821,3 - 2872,4	-1270,0 – 2600,0	-1270,0 — 3900,0
Линейно- деформируе- мое полу- пространство (приведенное)	11,0	-198,14 – 1929,0	8,12 – 2486,0	-1637,0 – 1205,0	-1476,0 — 1460
Линейно- деформируе- мое полу- пространство (неоднородное)	21,89	7,45 – 2497,0	19,54 – 3481,0	-2241,0 – 1179,0	-1484,0 — 1495,0



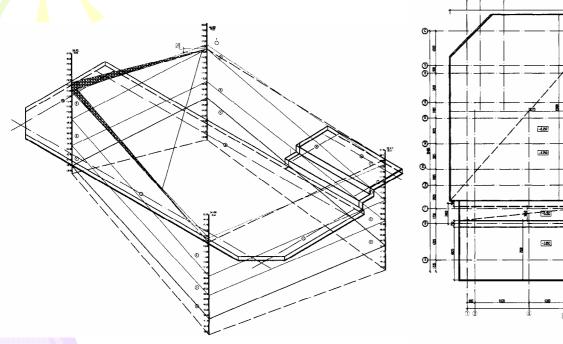
ООО "Геотек"

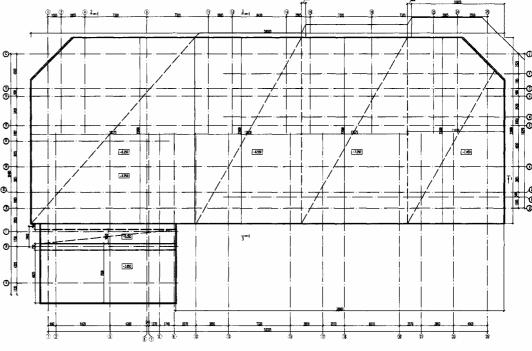


Жилой дом по ул. Чкалова

Инженерно-геологические условия

Привязка плиты

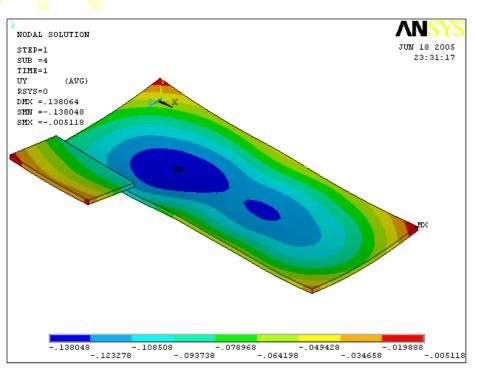


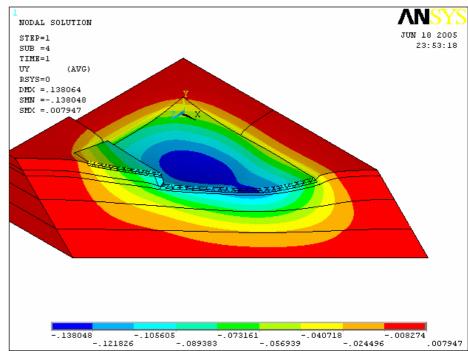

- В основании проектируемого жилого дома (рис. 1) на глубину до 3 м залегает насыпной грунт. Вторым слоем является глина тугопластичной консистенции, мощность которой изменяется от 6 до 8,5 м. Физико-механические показатели грунта: удельный вес грунта 16,1 кН/м3; е = 1,42; Sr = 0,93; IL = 0,28; с = 31 кПа; угол внутреннего трения 17 град.; Е = 14 МПа, =0,35.
- Третий слой глина полутвердая, мощностью от 3,5 до 4,5 м. Физикомеханические показатели грунта: удельный вес грунта 16,2 кH/м3; е = 1,38; Sr = 0,92; IL = 0,18; с = 36 кПа; угол внутреннего трения 19 град.; E = 15 МПа, =0,35.
- Четвертый слой глина полутвердая с разведанной мощностью до 5 м. Физикомеханические показатели грунта: удельный вес грунта 15,9 кН/м3; е = 1,38; Sr = 0,90; IL = 0,16; с = 39 кПа; угол внутреннего трения 19 град.; E = 28 МПа, =0,35.
- Грунтовые воды вскрыты на глубине 1,7
 2,8 м от поверхности природного рельефа.

Конструкция плиты

• Объемная модель

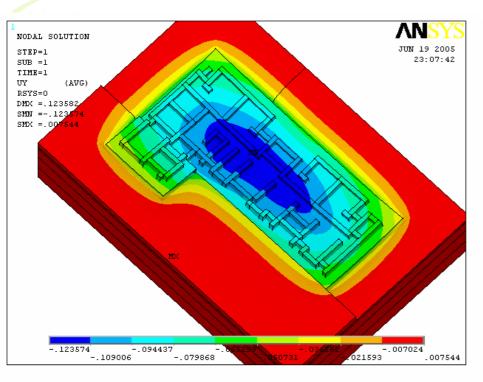
• План плиты

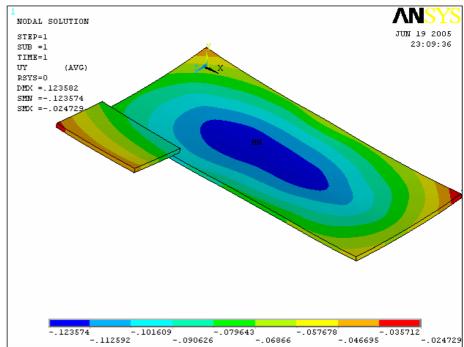




Плита толщиной 0,9 м

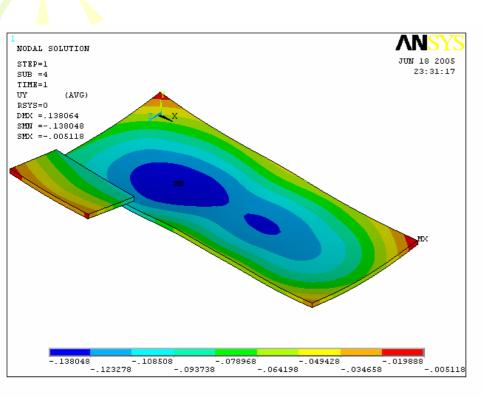
Деформация плиты.
 Smax=13,8 см

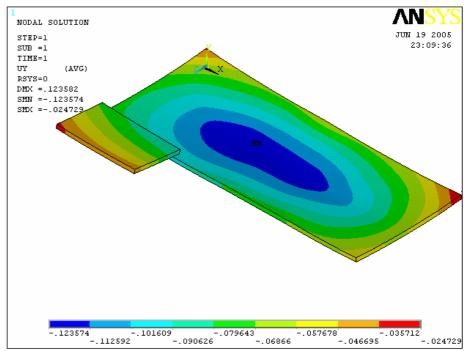




Модель плиты включая стены подвала

Деформация массива


Деформация плиты.
 Smax=12,3 см



Деформация фундамента

Плита. Smax=13,8 см

Сравнение результатов расчета

Расчетная схема (модель)	Момент М _х , кНм		Момент M_y , к H м		Момент М _{ху} , кНм		Осадка/прогиб, м	
	max	min	max	min	max	min	max	min
Плита	-627	1262	-123	1645	- 212	340	0,138	0,019
Плита с уступом	-712	1453	-183	1634	-210	622	0,138	0,019
Плита с уступом и стенами подвала	-301	1207	27	2375	-341	335	0,123	0,024

Расчет фундаментов производственного корпуса

- Фундамент в виде сплошной железобетонной плиты на песчаной подушке.
- Фундамент в виде сплошной железобетонной плиты на свайном основании.

Расчетная схема основания

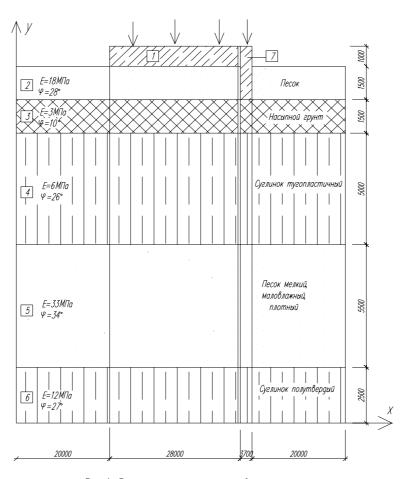
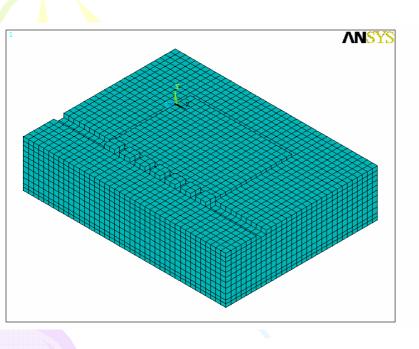
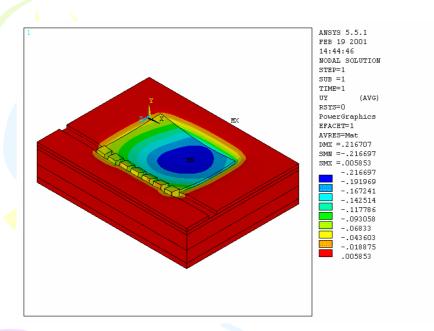
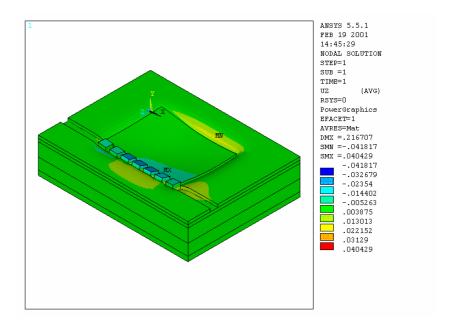
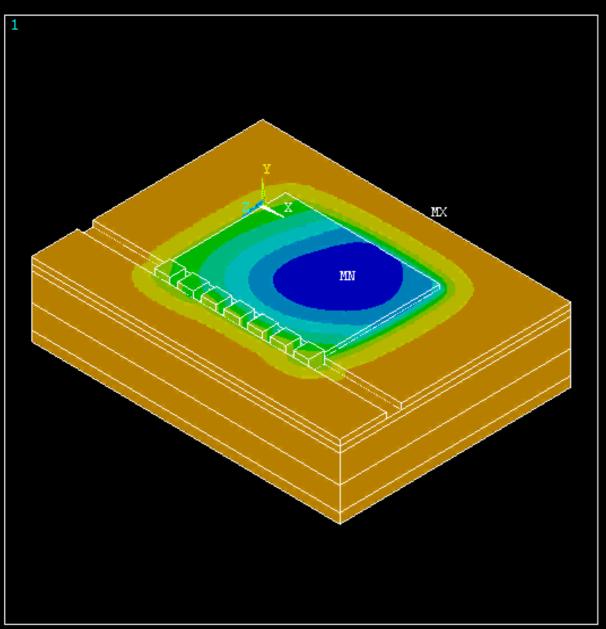



Рис.1 Расчетная схема основания


Модель основания


- Нагрузки на плиту и отдельно стоящие фундаменты существующего здания приняты сосредоточенными. На плите: в осях 6-8, J-Е равна 2160 кН; в осях 9-12, J-Е равна 5400 кН. На отдельно стоящих фундаментах нагрузки равны 2730 кН.
- На рис. приведены результаты разбиения расчетной области на 13476 конечных элементов.


Деформация основания

• По оси У

• По оси Z

ANSYS 5.5.1 FEB 16 2001 13:52:41

NODAL SOLUTION

STEP=1 SUB =1

TIME=1

UY (AVG)

RSYS=O

PowerGraphics

EFACET=1

AVRES=Mat

DMX = .216707

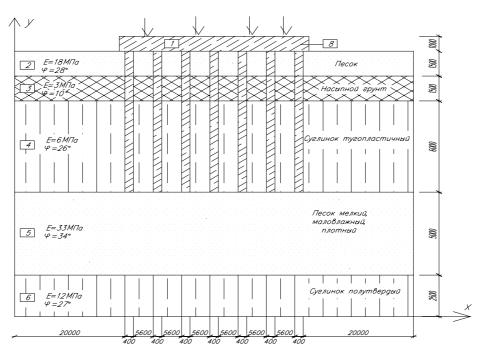
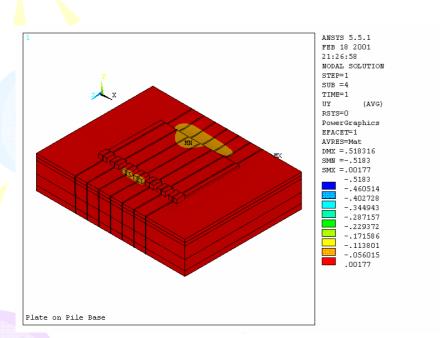
SMN =-.216697

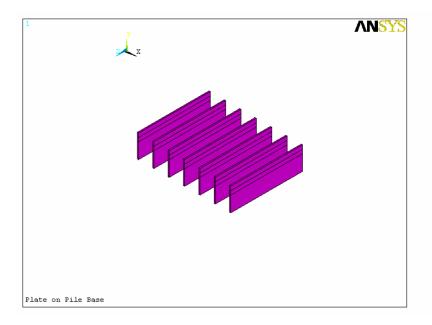
smx = .005853

Выводы

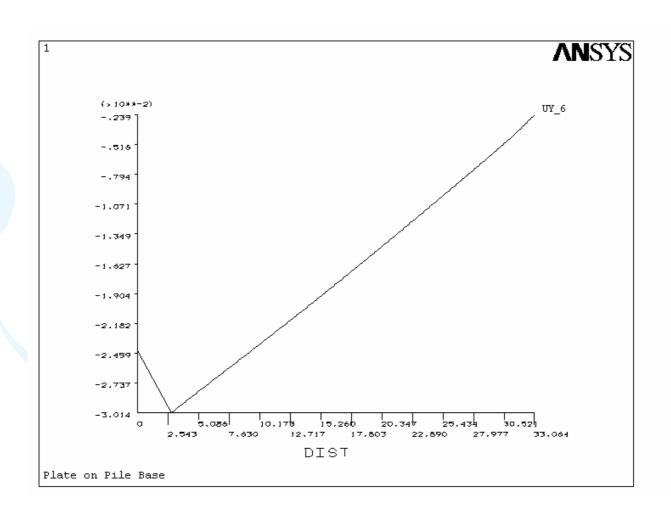
- 1. Максимальная осадка составляет 21 см, что более предельно допускаемой почти в три раза.
- 2. Осадки неравномерные. Плита «закручивается» в продольном и поперечном направлениях. Разность осадок по длине плиты по оси Н составляет 12 см. Относительная разность осадок = 12/4000 = 0,003, что превышает нормативное значение в 0,002.
- Имеет место взаимное влияние фундаментов. Дополнительное вертикальное перемещение (осадка) фундаментов существующего здания изменяется в пределах от 4 до 9 см. Наблюдается смещение фундаментов существующего здания в направление к плите на величину до 4 см.

Расчетная схема «гибкая плита свайное основание»


Рис. 2 Расчетная схема основания

Модель стены в грунте

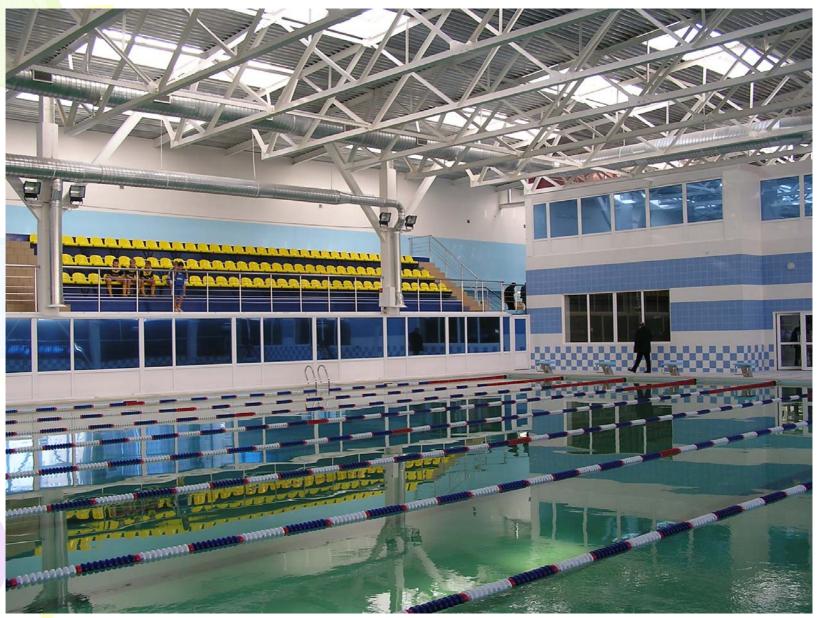

• Деформация по оси У

• Модель стены в грунте

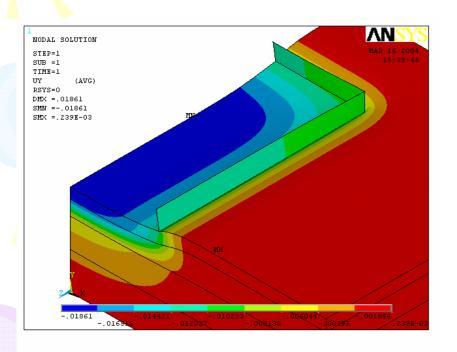
Осадка плиты и отдельно стоящего фундамента

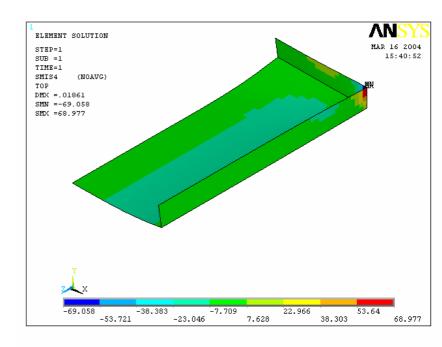
Выводы:

- Максимальная осадка составляет 3 см
- Осадки равномерные. Плита деформируется незначительно.
- Взаимное влияние плиты и отдельно стоящих фундаментов существующего здания незначительно.
- Дополнительное вертикальное перемещение (осадка) фундаментов существующего здания изменяется в пределах от 2 до 8 мм.


Бассейн размером 21х50 м

ООО "Геотек"




ООО "Геотек"

Расчет конструкции железобетонного бассейна на грунтовом основании

конструкции бассейна

Деформация грунтовой толщи и • Изгибающий момент Мх в днище и стенках бассейна

Расход стали на 1м3

Кирпичные здания (плиты)					
Наименование объета	Толщина плиты, см	Расход арматуры, кг/м ³	Расчет	Стадия	
15 этажный жилой дом по ул. З.Космодемьянской, г. Пенза	90	87.03	Ansys, Лира9.0	Строится	
10 этажный жилой дом по ул. Силикатной, г. Пенза	50 50 + щебень	248.28 186,6	Ansys, Лира9.0 Ansys	Построен Построен	
10 этажный жилой дом по ул. Чкалова, г. Пенза	75	128.68	Ansys, Лира9.2	Проектирование	
4 этажный жилой дом по ул.Карпинского, г.Пенза	50	101,2	Ansys	Построен	
6 этажный жилой дом по ул.Шмидтра, г.Пенза	50	63,2	Ansys	Построен	
10 этажный жилой дом г.Долгопрудный, Московская область	80	99.63	Лира 8.01	Построен	

	Каркас	еные здания (плиты)		
17 этажный жилой дом г. Щербинка, Московская область	120	93.09	Лира 8.01	Построен
17 этажный жилой дом г. Тольятти Самарская область	120	77.33	Лира 9.0	Строится
3 этажное админист-ративное здание по ул. Кирова, г. Пенза	25	146.59	Лира 9.0	Построен
	Каркасные зда	ания (перекрестные	ленты)	
Трехэтажный торговый центр г. Щербинка, Московская область	60	159.54	Лира 8.01	Построен
1-3 этажный торговый центр г. Тольятти Самарская область	60	103.14	Лира 9.0	Строится

	Каркас	сные здания (плиты)		
17 этажный жилой дом г. Щербинка, Московская область	120	93.09	Лира 8.01	Построен
17 этажный жилой дом г. Тольятти Самарская область	120	77.33	Лира 9.0	Строится
3 этажное админист-ративное здание по ул. Кирова, г. Пенза	25	146.59	Лира 9.0	Построен
	Каркасные зд	ания (перекрестные	ленты)	
Трехэтажный торговый центр г. Щербинка, Московская область	60	159.54	Лира 8.01	Построен
1-3 этажный торговый центр г. Тольятти Самарская область	60	103.14	Лира 9.0	Строится