ООО «НПП «Геотек»

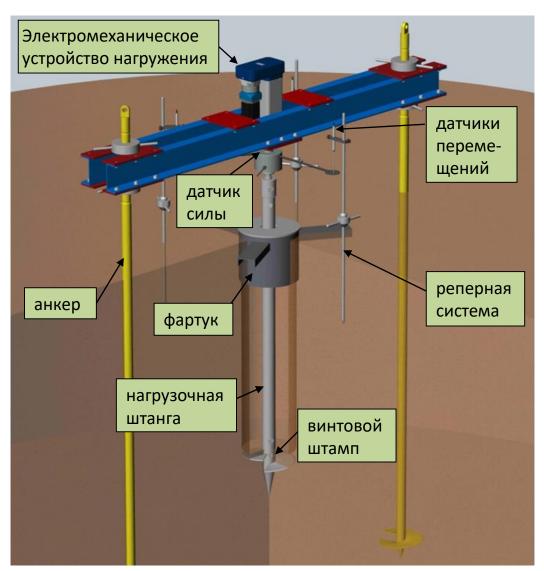
ОБОРУДОВАНИЕ ДЛЯ ПОЛЕВЫХ ИСПЫТАНИЙ ГРУНТОВ

Г.Г. Болдырев ¹, А.В. Мельников ², Д.Г. Скопинцев ³ Докладчик

Скопинцев Дмитрий Геннадьевич

¹ФГБОУ ВПО "ПГУАС", Пенза, g-boldyrev@npp-geotek.ru

² ООО "НПП "Геотек", Пенза, amelnikov@npp-geotek.ru


³ ООО "НПП "Геотек", Пенза, dskopintsev@npp-geotek.ru

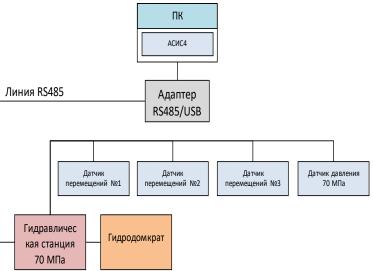
Комплекты оборудования производства ООО «НПП «Геотек»


Устройства	Нормативные документы	Типы грунтов	Определяемые характеристики
Штампы типов III и IV 600 кв.см	ΓΟCT 20276-2012	дисперсные немерзлые	E, p_{sl}, ϵ_{sl}
Установка стат. испытаний свай	ΓΟCT 5686-2012	все типы	N_c
Статический зонд	ГОСТ 19912-2012	дисперсные немерзлые, кроме крупнообломочных	q _c , f _s , E, R _c , профилирование
Жесткий дилатометр	СТП МИСИ 9201294-90	дисперсные немерзлые, кроме крупнообломочных	E, σ _{oh} , ξ
Буровой зонд	-	все типы	N, M, ω профилирование
Зонд SPT		все типы	p_d
Крыльчатка / стат. плотномер	ΓΟCT 20276-2012 TP 145-03	органоминеральные и органические J _L >0,5	τ , c_u , $ρ_d$, K_y
Динамический плотномер	TP 145-03	насыпные пески, супеси, суглинки	ρ_d , K_y
Устройство кольцевого среза	-	дисперсные немерзлые, кроме крупнообломочных	c, φ, E
Грунтоотборник	ΓΟCT 12071-2000	дисперсные немерзлые, кроме крупнообломочных	-

Испытания винтовым/плоским штампом

ΓΟCT 20276-2012

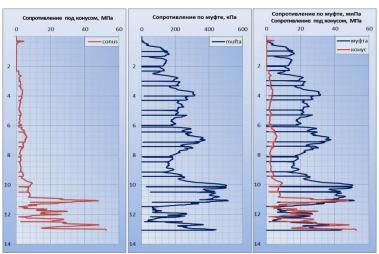
Проведение полевых испытаний грунтов винтовым и плоским штампами площадью 600 см² согласно ГОСТ 20276. Определяется модуль деформации грунта либо начальное просадочное давление и относительная деформация просадочности . Устройство создания нагрузки на штамп электромеханическое, обеспечивает максимально плавное создание и удержание нагрузки. Ступени нагрузки создаются и удерживаются до стабилизации автоматически. Зависимость осадки штампа от нагрузки отображается на экране компьютера, результаты измерений протоколируются.



Установка статического испытания свай

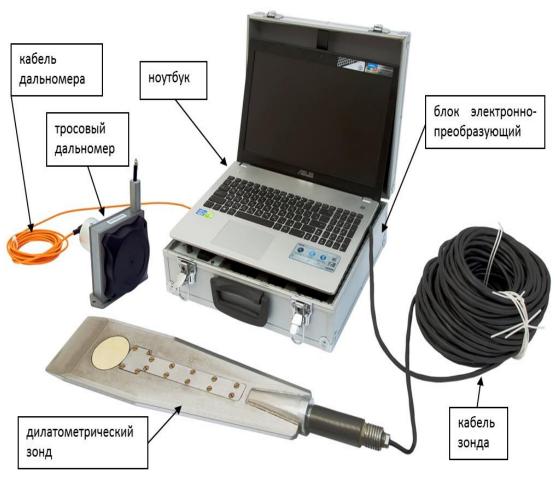
FOCT 5686-2012

Установка предназначена для автоматизированного определения несущей способности свай при испытании натурных, эталонных свай и свай-зондов статической задавливающей, выдергивающей и горизонтальной нагрузкой.

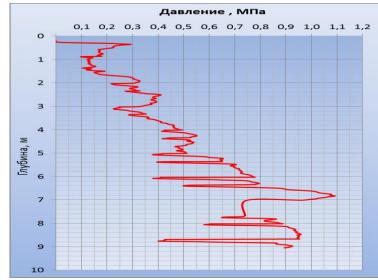

Структурная схема комплекта с насосной станцией и гидродомкратом на 200 т

Статическое зондирование

ΓΟCT 19912-2001, **ASTM** D5778, ISO 22476-1

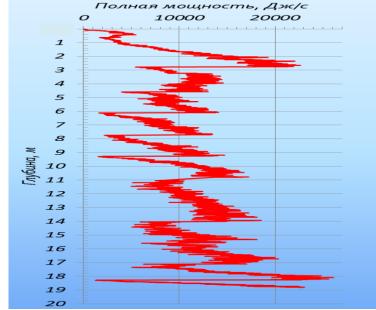


Устройство предназначено для проведения испытаний грунтов по ГОСТ 19912, ASTM D5778, ISO 22476-1. Основные решаемые задачи: комплексная оценка физикомеханических свойств грунтов в соответствии с СП 47.13330.2012, выделение инженерно-геологических элементов и оценка несущей способности свай по СП 50-102–2003. Измерение глубины зондирования выполняется в полностью автоматическом режиме. Графики зондирования строятся в режиме онлайн на экране компьютера, все результаты измерений записываются в файл протокола.



Зондирование жестким дилатометром

СТП МИСИ 9201294-90


Зонд погружается в грунт стандартной буровой установкой или задавливателем на штангах для статического зондирования. Измерительным элементом является жесткий датчик давления грунта – месдоза. Применяется для прямого определения нестабилизированного модуля деформации грунта в полевых условиях. При остановке вдавливания могут быть определены стабилизированный модуль деформации и параметры консолидации грунта. Измерение глубины зондирования выполняется в полностью автоматическом режиме по данным тросового дальномера.

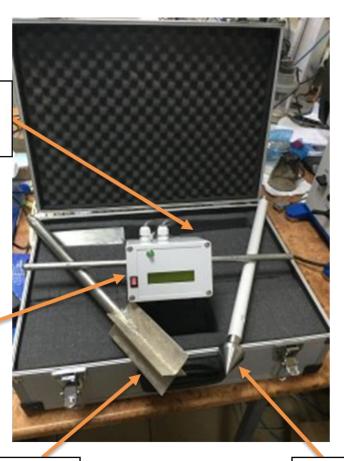
Буровое зондирование

Устройство бурового зондирования устанавливается между вращателем буровой машины и буровой колонной. Позволяет регистрировать параметры бурения: крутящий момент, осевую нагрузку, частоту вращения, глубину зондирования, вес буровой колонны. Может использоваться при бурении сплошными и полыми шнеками, колонковом бурении. Метод применим как в песчаных и глинистых, так и в гравелистых и мерзлых грунтах.

Динамическое зондирование SPT

ASTM D 1586, ISO 22476-3, ENV 1997-2, JIS A 1219.

Зонд используется при испытании грунтов методом стандартного динамического зондирования (SPT). Зондирование проводится с целью определения сопротивления грунтов путем динамического внедрения в грунт стального цилиндра с последующим отбором образцов нарушенной структуры для классификации грунтов.

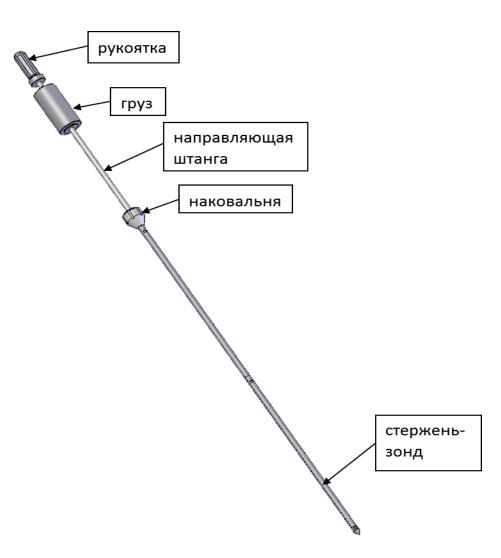


Устройство вращательного среза и статический плотномер

ΓOCT 20276-2012, TP 145-03

дополнительные направляющие штанги

> блок электроники с дисплеем


Комплект включает крыльчатку, стандартный конус, штанги и блок электроники с дисплеем. Методом вращательного среза определяются недренированная прочность и степень её пространственной изменчивости. Измеряется предельный и остаточный крутящие моменты. Испытания проводятся в глинистых грунтах мягко-, текучепластичной и текучей консистенции, органо-минеральных и органических грунтах, из которых сложно отобрать монолиты. При вдавливании стандартного конуса определяется степень уплотнения грунтов. Измеряется осевая нагрузка на конус.

крыльчатка

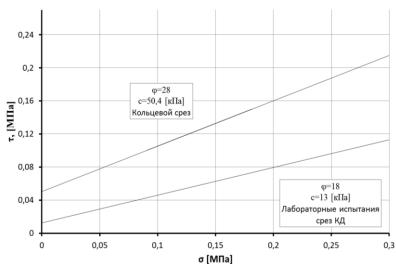
конус

Плотномер динамический

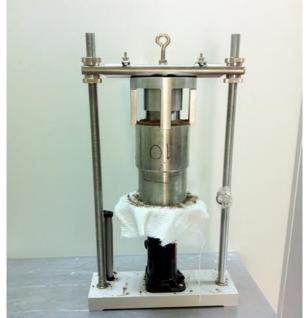
TP 145-03

Плотномер динамический предназначен для определения коэффициента уплотнения песчаных, пылеватых и глинистых грунтов в земляных сооружениях в полевых условиях методом динамического зондирования согласно ТР 145-03 «Технические рекомендации по производству земляных работ в дорожном строительстве, при устройстве подземных инженерных сетей, при обратной засыпке котлованов, траншей, пазух». Изделие позволяет определять скелетную плотность грунта путем измерения сопротивления грунта погружению в него конического наконечника (зонда) на глубину до 3 м под воздействием ударной нагрузки.

Устройство кольцевого среза



Используется для определения угла внутреннего трения, сцепления и модуля деформации грунтов в шурфах при обследовании фундаментов или на дне котлованов. Устройство включает электромеханический привод, опорную балку и три анкера. Испытания на срез для определения прочностных характеристик проводятся кольцевым штампом с площадью 60 кв.см. Одним приводом создаются ступени осевой нагрузки, другим - крутящий момент при скорость вращения от 0,1 до 15 °/с.



Пробоотборник ручной для грунта

ΓΟCT 12071-2000

Комплект предназначен для ручного отбора образцов глинистого грунта ненарушенного сложения с поверхности, дна котлованов и выработок в соответствии с ГОСТ 30416-96 и для дальнейшего испытания данных образцов по ГОСТ 12248-2010.

Спасибо за внимание!