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ABSTRACT 
 
In this paper the results of experimental and numerical researches of sand deformation in the basis of a rigid stamp loaded with central 
and eccentric loads in conditions of a plane and 3D space problem are shown. The numerical solution of a problem is executed with 
use of programs ANSYS, LS-DYNA and models of soil Drucker-Prager and Сар. The movement equations solution is executed with 
use of Arbitrary Lagrangian-Eulerian (ALE) method that has allowed to solve a problem at large deformations, even for the sandy 
basis stability loss. 
 
 
Localization of deformations in the form of shear strips 
formed at large soil deformations is one of the main features 
of stability loss process of the bases foundations. Another 
feature of stability loss process is its dynamism in the form of 
continuous change of deformation character of the basis at its 
loading. The complex behaviour of the bases during their 
stability loss causes certain difficulties in numerical modeling 
of this process. 
  
Nowadays there are some approaches to the movement 
description of the deformable continuous environment. It is 
the approach of Lagrange, the approach of Euler and 
combined Lagrangian-Eulerian approach (ANSYS Theoretical 
Manual). Ranges of these approaches use are well-known. 
Therefore, our purpose is not to list all of their strengths and 
weaknesses, we shall accentuate only some of them. 
 
In the Lagrangian approach the observer watches movement of 
material particles of the moving continuous environment. 
Unknown quantities that are searched during the solution are 
connected with the material particles. Unknown quantities are 
movings and speeds of material particles and their pressure 
and deformations. 
 
The finite elements method (program ANSYS (Belytschko 
Ted et al [2000])) is mostly used in Lagrangian approach to 
the continuous environment movement description for 3D 
space discretization. For the solution of dynamic problems the 
finite elements method is used with the obvious or implicit 
scheme of integration of the first or second order (program 
LS-DYNA (Boldyrev G. G. and Nikitin E. V. [2005])). 
 
During stability loss there are shear deformations in the basis 
that exceed hundreds percent. Soil elements undergo very 

large deformations that exceed the size of finite elements. 
Therefore, if these excessively deformable or destroyed 
elements are not excluded from the solution, the environment 
material behavior will become rigid. That is why sometimes 
they say that environment becomes isolated at shear.  Use of 
adaptive mesh and finite elements with one integration point 
allows to carry out numerical modeling of deformation process 
to the point of stability loss. However, bad conditionality of a 
system rigidity matrix, owing to excessive distortion of a 
mesh, often leads to impossibility of the adequate solution 
both at approach of deformation process to the limiting 
stability load and behind of the failure load. 
 
In Euler’s approach to the continuous environment movement 
description the observer watches points of space. Unknown 
quantities such as speeds of environment movement, pressure 
and deformations, are connected with points of space. 
Lagrangian approach is used for solution of geotechnical 
problems much more often than Euler’s one. It is caused by 
necessity to use additional procedures for definition of the 
continuous environment movings, including its boundary, and 
by complexity of the internal variables transfer registration 
that characterize a condition of ground material particles. In a 
number of references values, that describe inwardness of the 
continuous environment material particles, are often called 
historical variables. 
 
The Lagrangian-Eulerian approach or Arbitrary Lagrangian-
Eulerian formulation (ALE) (as it is called in foreign 
literature) combines both of the approaches (ANSYS 
Theoretical Manual).  
 
A number of deformable body problems solutions methods are 
developed on the basis of Lagrangian-Eulerian approach. The 
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main methods are Arbitrary Lagrangian-Euleran method, 
Multi-material Eulerian method and  Multi-material Arbitrary 
Lagrangian-Euleran method. 
 
At the problem solution with Arbitrary Lagrangian-Euleran 
method the finite element mesh nodes can move within the 
area, which is occupied by material to reduce distortion of a 
mesh. Each finite element contains one material.  
 
If we use a Multi-material Euler method the material flows 
through the mesh, which is fixed in space. Each element can 
contain a mix of several materials.  
 
In a Multi-material Lagrangian-Euleran method the material 
flows through a moving grid in space. Each element can 
contain a mix of several materials. 
 
The solutions based on Arbitrary Lagrangian-Eulerian method, 
have advantages of methods Lagrange and Euler concerning 
continuous environment movement description. At the same 
time they do not have lacks described above. In a number of 
references examples of their successful use for the solution of 
geomechanics problems (Belytschko Ted et al [2000], 
Boldyrev G. G. and Nikitin E. V. [2005], Di Y. and Sato T. 
[2003]) are shown. 
 
At the problems solution there are often situations when 
various parts of considered system show various types of 
mechanical behaviour. For example, one part of system 
behaves as a liquid, another – as a solid body. In such situation 
Lagrangian method can be used for the description of a solid 
part movement, and Eulerian method for the description of a 
liquid movement. In this case, the algorithm of linkage 
Lagrangian-Eulerian realized, for example, in program LS-
DYNA can be used for modeling of considered parts 
interaction. In foreign literature it is called Fluid-Structure 
Interection (FSI). The similar approach is used in works (Di Y. 
and Sato T. [2003], Di Y. and Sato T. [2004], Li S. and Liu 
W.K. [2000]) for the description of saturated soils behaviour. 
 
It is necessary to note, that of late years two methods based on 
approach of Lagrange to the continuous environment 
movement description, which allow  effective modeling of 
stability loss process of the bases, are realized in a number of 
systems of the automated engineering analysis, for example in 
LS-DYNA program. It is a mesh-free method of the smoothed 
particles (Smoothed Particle Hydrodynamics) and a mesh-free 
method based on Galerkin method (Element Free Galerkin 
method). Both methods are mesh-free, they are based on local 
approximation of movings nodes or particles so they are not 
sensitive to large distortions of a mesh. Therefore they are so 
efficient for the solution of considered problem. Method 
Galerkin is applied in works (LS-DYNA Theoretical Manual, 
Malyshev М.V. [1953]). 
 
The features of soil deformation and destructions, the 
importance of registering numerous factors, which influence 
soils behaviour, cause necessity to use multistage procedure of 
the various tasks solution in the field of geoengineering. Such 

procedure assumes presence of the following stages – the test 
of a material, the parameter identification of constitutive 
relations (the material model), the test tasks solution, the semi-
natural tests realization and modeling, the real deforming 
processes modeling. The contents and volume of each stage is 
determined by the purposes of mathematical modeling or 
calculation. The procedure can be iterative. 
 
The given solution procedure has been applied in research of 
the deformation mechanism of the sandy basis loaded by a 
rigid stamp. The problem was solved in some stages. At the 
first stage the experiences with model of a rigid stamp on the 
sandy basis have been executed. At the second stage the soil 
model has been chosen and its parameters has been defined by 
laboratory researches of samples of the same sandy soil which 
was used at modeling the sandy basis. At the third stage 
calculations of the intense-deformed condition of the sandy 
basis have been executed by method Lagrange (program 
ANSYS) and by Arbitrary Lagrangian-Eulerian (program LS-
DYNA). 
 
The purpose of present work was the estimation of ANSYS 
and LS-DYNA programs opportunities for the decision of 
geoengineering tasks. Thus, the special attention was given to 
opportunities of using material models intended for this 
purpose.  
 
In ANSYS program there are two material models for the 
description of soil behaviour – the model of Druker-Prager 
(DP) and Extended model of Druker-Prager (EDP). The latter 
model has appeared in ANSYS of version 10.0 for the first 
time.  
 
In LS-DYNA program the following models are intended for 
the description of soil behaviour – the Kreig ground (#5), the 
Kreig ground with destruction (#14), the geological model 
which is taking into account two invariant of stress tensor - 
CAP-model (#25), the Schwer-Murray geological model 
(#145), the ground FHWA (#147), the model of clay (#192) 
and the Druker-Prager model (#193).  
 
Let's consider the contents of the basic stages of a typical 
sequence of deformation process modeling in soils.  
 
1. The test of a soil. The purpose of the tests is the primary 
information sufficient for parameter identification, used in 
further soil models calculations. Soil tests are carried out when 
the material model for the description of stress-strain soil 
behaviour is chosen and its parameter identification procedure 
is defined.  
 
The realization of triaxial compression and expansion, direct 
simple shear and hydrostatic compression tests suffices for 
parameter identification of the majority of material models for 
soils mentioned above. The equipment of firm "Geotek" 
(www.geoteck.ru) can be used for realization of the given 
tests. It includes the automated triaxial device (Fig. 1,a), direct 
shear device (Fig. 1,b) and so on. The technique description of 
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tests realization is given in works on site www.geoteck.ru and  
GOST 12248-96 [4].  
 
The loading of each sand sample was carried out in two stages. 
At the first stage the hydrostatic compression by pressure 
accordingly 100 and 200 kPa was carried out. Further lateral 
pressure was supported at the given level, and the vertical 
pressure increased before sample failure. Two samples tests 
are enough, for example, for definition of all parameters of 
Druker-Prager model (DP) and advanced Druker-Prager model 
(EDP) which is realized in the ANSYS program. The yield 
surfaces Druker-Prager  and Cap are shown in Fig. 1.  
 
Advanced Druker-Prager model using a parabolic or 
hyperbolic surface of fluidity and plastic potential demands a 
greater number of tests to define the same parameters.  
Additional odometer tests are required for parameters 
definition of CAP-model (*25) realized in LS-DYNA 
program. The accuracy of material model parameters 
definition can be increased by enlargement of tests number 
and by LS-DYNA program approximation with the least 
squares method. 
 
2.The parameter identification of constitutive relations. The 
equation of a yield surface in Druker-Prager model (DP) is [6] 
 

0σβσ3 =−+= ymTF ,                      (1) 
 

where T is the intensity of shear stress;  is the average 
stress; ,  are the parameters of the model.  
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The results of tests submitted in a Fig. 2 allow to determine 
two points laying on a yield surface:  and ( )11σ T,m ( )22σ T,m . 
Substituting the given values in the equation (1) and solving 
the received system concerning unknown parameters, we 
have:  
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Fig.1. The yield surfaces: Druker-Prager (a) and Cap (b) 
 
 
The ,  parameters are connected with Mohr-Coulomb 
parameters by the following dependences [6] 
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where с is  the cohesion and   is the angle of internal 
friction.  

φ

 
From the first relation (3) by a known value of parameter β  it 
is possible to define numerically or graphically an angle of 
internal friction. Then, the cohesion can be determined from 
the second equation (3).  
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Third parameter of Druker-Prager model (DP) is the angle of 
dilatancy . With the help of this angle we can define the 
following parameter:  
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which enters into relation of plastic potential 
 

 .                       (6) 0σσβ3 =−+= ym'TQ
 
 

                                                      
Fig. 2. The Druker-Prager surface (curve 1) and the trajectory 

of loading process of the cube (curve 2) in space (T - p) 
 
 
According the plastic deformation values on the appropriate 
coordinate axes  determined as a result of tests of 
cylindrical samples on triaxial compression, the following 
parameter can be defined: 
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On the certain value of β , it is possible to define a angle of 
dilatancy numerically or graphically by use of Eq. (5). 

′

 
The Extended Druker-Prager model (EDP) using a parabolic 
or hyperbolic yield surface and the plastic potential for 
definition of the appropriate parameters requires the 
realization of the greater number of tests, and for definition of 
parameters of CAP-model (#25) realized in LS-DYNA 
program. It is required to realize the odometer tests in 

addition. The accuracy of material model parameters 
definition can be increased by enlargement of tests number 
and by LS-DYNA program approximation with the least 
squares method. 
 
3. The solution of test tasks. The purpose of the test tasks 
solution is to check the correspondence of deformation process 
modeling results realized at laboratory samples tests, carried 
out for definition of materials model parameters, to 
experimental data, on which the required parameters of 
models were received.  
 
As an example we shall consider the stress-strain state of cube, 
to which sides the pressure p1 p2, p3 as function of time are 
enclosed, as shown on Fig. 3.  
 
Let pressure on the cube side change as: 
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where k is parameter  P1 и P2 are the parameters of 
loading process; t is a time. 
 
Let P1 = 20 kPa, P2 =  100 kPa, . The surface failure 
(curve 1) and the stress path (curve 2) in space (T - p) are 
shown on Fig. 2. Here T is the intensity of shear stress and p is 
the hydrostatic pressure. 

1=k

 
 

 
Fig. 3. The diagram of deforming process 

 
 

During solution we shall use Druker-Prager model with the 
following parameters: the module of deformation Е =  5,1 
MPa; Puasson factor µ = 0,25; cohesion  с = 11 kPa; an angle 
of internal friction = 19 degrees and  an angle of dilatancy φ’ =  
19 degrees. 
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Let's define pressure 3p , at which stress in cube achieved the 
yield surfaces. Further we shall assume, that the yield surface 
will be achieved at . For definition .t 21 ≤< 3p  we shall 
write down equations for definition of the intensity of shear 
stress T  and average stress  : mσ
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Having substituted  and   in Eq. (6), we shall receive: T mσ

 

yp
k
p

k
pp σ2

3
1β3

3
1

3
11

3 =⎟
⎠
⎞

⎜
⎝
⎛ +−− .             (10) 

                       
From Eq. (10) we shall determine the pressure, at which stress 
in cubed achieved the yield surfaces: 
 

β
3

1

β2
3

1σ 1

3
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
k
p

p
y

.                       (11)                                          

 
At the given parameters of material model and loading 
conditions we shall receive kPa703 =p . 
 
Let's carry out modeling the loading process of a cube in 
ANSYS. At modeling we shall use the associated law of 
plasticity as 19=′=φφ  degrees. The results of deformation 
process modeling are submitted in a Fig. 4 and Fig 5. 
 
The analysis of modeling results allows to make the following 
conclusions: 
 
- The process is ideal elastic-plastic, the value of pressure 3p , 
at which the cube material passes into elastic-plastic state 
equals 70 kPa (see Fig. 7) and corresponds to the analytical 
decision; 
 
- The plastic deforming is accompanied by change of cube 
volume (see Fig. 3); 
 
- The Eq. (7) allows to inspect conformity of a dilatancy angle 
to the calculated values of plastic deformations. So the 
received values of plastic deformation at  are: 
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The angle of dilatancy is 19,4 degrees, that will be 
corresponded to the original data. 
 
 

 
Fig. 4. The relationship between stress (Pa) and time: 

s_11 - σxx; s_22 - σyy; s_33 - σzz; s_i - σi 
 
 
 

 
Fig. 5. The relationship between plastic strains and time: 

EP_11 - εp
xx; EP_22 - εp

yy; EP_33 - εp
 zz; EP_V - εp

v
 
 
During calculation we use CAP-model of stress-strain state of 
cube at pressure P1 = 20 kPa, P2 = 40 kPa. On Fig. 6 CAP-
surface (curve 1) and stress path (curve 2) in space of stress 
invariant are shown.  are the first and second invariants 
of stress tensor. 

21 J,J

 
The definition of pressure value 3p , at which the trajectory of 
loading process reaches yield surface, is carried out 
numerically.  
 
The results of modeling are submitted on Fig. 7 and Fig. 8.  
 
The analysis of modeling results allows to make the following 
conclusions: 
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- The process is elastic-plastic with weak hardening, the 
pressure value 3p , at which the cube material passes into 
elastic-plastic state corresponds to the numerical decision; 
 
- The plastic deforming is accompanied by the change of cube 
volume (Fig. 8). 
 
 

 
Fig. 6. The CAP-surfaces in space ( 2J  - )  (curve 1) 1J

and the trajectory of cube loading process (curve 2) 
 
 

 
Fig. 7. The relationship between stress (Pa) and time: 

s_11 - σxx ; s_22 - σyy; s_33 - σzz; s_i - σi 

 

 

 

 

 

Fig. 8. The relationship between plastic strain and time 
EP_11 - εp

xx; EP_22 - εp
yy; EP_33 - εp

 zz; EP_V - εp
v 

 

 
4. The modeling of semi-natural tests. The purpose of semi-
natural test realization was the research of deformation and 
destruction laws of a real sandy soil with geometrical 
similarity of model and real base. The considered tests 
consisted in indenter of a steel plate by size 0,4×0,3×0,1 m in 
the layer of a sandy by size of 3×3×2,5 m, placed in a box. The 
basis has been executed from fine-grained sand with density 
16,0 kN/m3.  Sand kept within a tray layers on 0,20 m with 
compaction soil up to noted density. Moisture of sand = 1,4 %. 
 
During the loading process we registered the loading on a 
plate and the vertical displacement of a plate, and also the 
vertical displacement of sandy ground surface in longitudinal 
and cross sections. 
     
In the first series of experiences the behaviour of the sandy 
basis was investigated at the central action of loading. In the 
second series of experiences vertical loading was put with 
eccentric in 0,05 m, and in the third series with eccentric in 
0,10 m in a direction of the long party of a stamp on its axis of 
symmetry. Loading on a stamp was put by steps of 10 % from 
settlement limiting with endurance at each step until 
stabilization of deformations. Vertical moving of a stamp was 
measured in two points on the opposite parties of a stamp on a 
long axis of symmetry. Measurement of the settlement was 
carried out to four LVDT with accuracy of 0,01 mm. In 
experiences measurement of deformation of the basis surface 
in a direction of both axes of a stamp symmetry by ten LVDT. 
Loading was created by a hydraulic jack. 

  
The character of deforming of sandy basis surface in 
conditions of space deformation is shown on Fig. 9 a. The 
feature of given process is the significant depth of plate 
settlement to the sand, which made more than 0,06 m. Thus 
essential reduction of inclination of "loading - vertical 
displacement" curve was observed, that is the certificate of 
deforming process approximation to loss of stability (Fig. 9 b). 
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a) 

 
 
b) 

 
 
 

Fig. 9. Deformation of  sandy basis surface (a) and 
dependence settlemet of a stamp from loading (b):  

1 – central load; 2 – eccentric 0,05 m; 3 – eccentric 0,1 m 
 
 

Average values from five results of tests for each kind loading 
are shown on Fig. 9 b. Here we can see influence eccentric of 
loading on character settlement of a stamp and size of a 
maximum load. Loss of stability of the sandy basis in classical 
sense in the form of sharp settlement of a stamp and sand 
failure is observed only at of the central loading. If we 
implement eccentric it will be impossible to reach a strongly 
pronounced limiting condition at loading. Settlement of a 
stamp it is accompanied by its turn in a direction of loading 
eccentric actions. The diagram of deformation has no sharp 
excess. The site of linear deformation decreases with growth 
eccentric load. The ground surface adjacent to the stamp 
bulges is unilateral. At loading close to limiting on a surface of 
the sandy basis visible fissures are formed. Fissures extend in 
a radial and ring direction in relation to a rectangular stamp. 
The size of a bulges sand decreases for surfaces of the basis 
with growth eccentric loading. The similar mechanism of 
deformation of the basis with formation of fissures has been 
revealed for conditions of plane deformation in (Murakami A. 
et al [2005]). 
 

5. Numerical modelling of tests of the sandy basis by a rigid 
stamp. The purpose of this research stage is numerical 
realization of a problem of a stamp implantation in a sandy 
ground to the point of a maximum load on stability of the 
sandy basis. 
 
At the first stage calculations were carried out with use of 
ANSYS program, Druker-Prager soil model and the associated 
law of flow. The solution of the movement equations is 
executed by Lagrange method. Calculations have been 
executed for three cases loading, modeling sand tests by a 
stamp at central and eccentric load. In all cases settlement of a 
stamp (Fig. 9 d) practically linearly depends on loading up to 
skilled values of the loadings corresponding of the basis 
stability loss. Actually it was not possible to realize a limiting 
condition in calculations, in spite of the fact that the basis 
plastic deformations of shear (Fig. 10 c) took place in sand and 
developed progressively in process of growth loading.  
 

a) 

 
 

b) 
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c) 

 
 

d) 

 
 

Fig. 10.  Some results of calculation of the sandy basis at 
eccentric loading of 0,05 m with use of model of soil Druker-

Prager and programs ANSYS: a - model of the basis;  b - 
vertical displacement; c - plastic strain of shear; d  - relation 

settlement of a stamp from loading. 
 
 

At the second stage LS-DYNA program has been used, but 
calculations have been executed for the conditions of plane 
deformation. ALE method realized in program LS-DYNA, has 
been used in a combination to CAP-model. Some results of 
mathematical modeling are presented on Fig. 11, 12 (for 
model of central loaded stamp), and on Fig. 13, 14 (for a 
stamp with eccentric loading). A stamp loading was carried 
out continuously with the set speed of 0,2 m/s. 
 
Distributions of the module of speed in vertical section of 
settlement area during the various moments of time are shown 
on Fig. 11. Change of distribution character at increase in 
vertical loading testify to occurrence, expansion and 
interaction of area of plastic deformations with lateral walls of 
a box (Fig. 11 b,c). Under a stamp there is an area of sand, 
which moves with a speed of 0,2 m/s (Fig. 11, 12), equal to 
speed of movement of a stamp. This area changes the volume 
 
 

in process of growth of external loading and coincides under 
the form with the compacted soil body observable in 
experiences. 
 

a b c 
Fig. 11. The distribution of speed module (m/s) in settlement 
area: a, b, c is the vertical displacement of a plate 21, 31 and 

41 mm accordingly 
 
 

On Fig. 10, in the area 1 which does not move with growth 
deposits of a stamp is shown. The size given, as though 
"зависшей" areas of sand changes with growth deposits of a 
stamp, decreasing with its increase. 
 

Distributions of sand density of the basis in vertical section of 
settlement area during the various moments of time are shown 
on Fig. 12. Initial density of sand is 1,614 g/sm3. In process of 
stamp settlement growth the density of sand decreases up to 
1,600g/sm3 or increases up to 1,620 g/sm3 in sand under a 
stamp. In a zone of compaction it reaches the value of 1,620 
g/sm3, and in a zone of the maximal dilatancy - 1,600 g/sm3. 
The zone of compaction has an outline in the form of a 
column, and a zone of expansion in the form of strips. Step-
by-step loading leads to progressing development of a shear 
strip which is displaced from edge to the right from under a 
stamp in a direction to a free surface of the sandy basis. 

 

a b c 
Fig. 12. The distribution of density sand (g/sm3): 

a, b, c is the vertical displacement of a plate 21, 31 and 41 mm 
accordingly 
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The results of deformation field measurement in the sandy 
basis in conditions of a plane problem (Sokolovskij V.V. 
[1965]) are shown on Fig. 13. On Fig. 7 we can see, that 
deformations of shear arise in corners of a stamp and extend 
downwards and aside, and their maximal values are localized 
within the limits of rather narrow strip. Step-by-step loading 
leads to progressing development of a shear strip which edge 
is displaced to the right from under a stamp in a direction to a 
free surface of the sandy basis. On same figure the area 1 is 
shown. Here there are no deformations of shear at all loading 
steps. It adjoins a free surface of the basis, and its volume with 
growth of loading decreases owing to development of shear 
deformations on the bottom boundary. Experiments have 
shown, that at loading close to limit on stability, in the basis 
under a stamp volumetric deformations of expansion of sand 
prevail and only in a small zone under a stamp volumetric 
deformations of compression are observed. The most intensive 
expansion of sand is observed in a direction of development of 
the maximal deformations of shear. 

 
Fig.13. The lines of equal deformations of shear at a 

settlement of the stamp, equal: a - near to a maximum load;  
b- behind a maximum load 

 
Similar character of the sandy basis deformation is received as 
a result of numerical calculation. The area 1 which does not 
move and its volume decreases with growth of loading is 
shown on Fig. 11. You can see the zones of sand compaction 
and expansion of on Fig. 12 a,b,c.  At initial loading steps 
(Fig. 12) deformations of shear of the first kind, causing 
expansion of sand, as well as in experiments, develop from 
corners of a stamp. In sand the deformations of compaction 
dominate, mainly within the limits of a column of the stamp 
limited in the width, and on depth equal (3-4) b, where b - 

width of a stamp. The average sand density in this area is 
1,620 g/sm3. At loading more than 30 % from limiting (Fig. 12 
b) there are deformations of shear of the second kind (from top 
of «an elastic soil kernel») on a vertical axis of symmetry on 
the depth of 1,5b. The narrow zone of sand expansion (density 
of 1,600 g/sm3) reaches a surface of the ground. 
 
Further with growth of loading (Fig. 12 с) shear deformations 
of the first and second kind are united in two strips dividing a 
zone of compaction symmetrically in four pieces. The first  
(located under a stamp) is the so-called compaction soil body, 
(sometimes, «an elastic soil kernel ») which has been revealed 
earlier experimentally (Malyshev 1953). It is necessary to 
note, that at load equal to bearing capacity the compaction of 
sand takes place in a column ground under a stamp in spite of 
the fact that it is divided into parts by shear strips. 
 
It is interesting to note the fact, that character of deformation 
of the sandy basis numerically is very similar to a mesh of 
sliding lines of the analytical decision of the theory of limit 
equilibrium state (Sokolovskij, 1960). On Fig. 12 c you can 
see, that the fan of the second strips starting radially from the 
corner of a stamp, represents the second family of sliding lines 
on Sokolovskij if to accept a shear strip starting from a corner 
of a stamp and leaving on a surface of the ground for the first 
family of lines of sliding. 

Similar character of deformation of the sandy basis is 
observed and at eccentric floading (Fig. 14, 15). 

 

Fig. 14. The distribution of density sand (g/sm3) at eccentric 
loadings equal 0,05 m 

 
 

 
Fig. 15. The distribution of density sand (g/sm3) at eccentric 

loadings equal 0,1 m 
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The bulges prism size decreases with growth of eccentric 
loading, as well as the value of a maximum load (Fig. 16). 
Initial density of sand of the basis on Fig. 14, 15 is 
1,608g/sm3. The diagram of dependence of the vertical force 
acting on a plate, from vertical moving a plate is shown on 
Fig. 16. The schedule has obviously expressed nonlinear 
character. 
 

 
Fig. 16. Dependence settlement from vertical loading at 

various eccentric: A- central loading; B - eccentric 0,05 m;   
C – eccentric 0, 1 m 

 
 

References 
 

ANSYS Theoretical Manual. www.cadfem.ru. 
 
Belytschko Ted, Wing Kam Liu, Brian Moran [2000]. 
„Nonlinear Finite Elements for Continua and Structures”. 
Wiley. 
 
Boldyrev G. G. and Nikitin E. V. [2005]. “Deformation of 
sand in the bed of a strip footing”. Journal Soil Mechanics and 
Foundation Engineering. SpringerLink, pp. 36-40. 
 
Di Y. and Sato T. [2003]. “Remapping Scheme in ALE 
Method for Liquefaction Simulation”. 16 th ASCE 
Engineering Mechanics Conference. University of 
Washington, Seattle. 
 
Di Y. and Sato T. [2004]. “Computational Modelling of Large 
Deformation of Saturated Soils Using an ALE Finite Element 
Method”. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 
47 C. 
 
Li S. and Liu W.K. [2000]. “Numerical simulation of strain 
localization in inelastic solids using mesh-free methods”. 
International Journal for Numerical Methods in Engineering, 
No. 48, pp. 1285-1309. 
 
LS-DYNA Theoretical Manual. www.cadfem.ru. 
 

Malyshev М.V. [1953]. “Theoretical and experimental 
researches of bearing capacity  of the sandy basis”. Moscou, 
Inst. VODGEO (in Russian). 
 
Murakami A., Arimoto S., Setsuyasu T., Nishiyama T. [2005]. 
“Mesh-Free Method for Predicting the Behavior of Saturated 
Soil”. In: Geomechanics. Testing, Modelling, and Simulation,  
pp. 664-672. 
 
Nazem M. and Sheng D. [2005]. “Arbitrary Lagrangian-
Euleran Method for Consolidstion Problems in 
Geomechanics”. VIII International Conference on 
Computational Plasticity. COMPLAS VIII. Eds.: E.Onate, 
D.R.J.Owen, Barcelona. 
 
Sokolovskij V.V. [1965]. “Statics of Granular Media”. 
Pergamon, Oxford. 

Paper No. 1.08  10 

http://www.cadfem.ru/
http://www.cadfem.ru/

