ПЛАСТИЧЕСКИЕ И УПРУГО-ПЛАСТИЧЕСКИЕ ЗАДАЧИ ПРИ РАСЧЕТЕ ОСНОВАНИЙ

М. В. Малышев,

ст. науч. сотр. И. В. Федоров, рик. лаборатории

Задача об определении величины предельного давления, которое может быть воспринято основанием, решенная В. В. Соколовским, соответствует случаю наклонной нагрузки при наличии грунта основания со сцеплением с, а также пригрузки, находящейся сбоку фундамента. Для практических расчетов В. В. Соколовским [1] рекомендован приближенный способ определения несущей способности основания из весомого грунта, обладающего углом трения φ и сцеплением, который основан на допущении о возможности суммирования результатов определения несущей способности основания результатов определения несущей способности основания результатов определения несущей способности основания результатов определения несущей способности основания, составленного весомым ндеально сыпучим грунтом ($c \neq 0$, $\gamma = 0$, $\varphi \neq 0$) и невесомым связным

Рис. 1. Расчетные схемы

а — фундамент и действующие силы; б — схема для определения критической нагрузки по В. В. Соколовскому; в — зоны в основании; 1 — зона предельного состояния; 2 — ядра под фундаментом; 3 — упругая зона; г — схема для определения несущей способности основания фундамента грунтом ($c \neq 0$, $\gamma = 0$), $\varphi \neq 0$, $\gamma -$ объемный вес грунта основания.

Для того чтобы определить необходимую величину несущей способности основания Q_f в случае действия на фундамент наклонной эксцентрично приложенной силы Q_a при различной величине заглубления его в грунт основания справа и слева D_1 и D_2 (рис. 1, *a*), можно воспользоваться излагаемым ниже несложным графоаналитическим приемом. Предельное значение вертикальной ординаты эпюры реактивного давления $q_{f,z}$ выражается формулой (рис. 1, *б*)

$$q_{f,z} = N_q^1 \gamma D_1 + N_c^1 c + N_\gamma^1 \gamma x.$$
⁽¹⁾

Коэффициенты N_q^I , N_c^I , N_{τ}^I приводятся в таблице и заимствованы нами из работы В. В. Соколовского [1]. Они зависят от величины наклона равнодействующей полного давления $Q_{f,z}$ характеризуемого углом δ и имеющего вертикальную составляющую к вертикали.

φ°	ő°	N_q^1	N_c^1	N ¹ _γ	N _q ^u	N ^{<i>u</i>} _c	N ^u _γ
0	0	1	5,14	0	1	5,14	0
10	0 10	$\substack{2,47\\1,5}$	8,34 2,84	0,46 0,17	2,47 1,65	8,34 3,69	0,46 0,61
20	0 10 20	6,4 4,65 2, 0 9	14,8 10 3	2,94 1,32 0,32	6,40 7,79 3,05	14,8 18,7 5,64	2,94 5,43 5,59
30	0 10 20 30	18,4 12,9 7,97 2,75	30,1 20,6 12,1 3,02	16,2 6,91 2,72 0,43	18,4 23,9 28,3 6,7	30,1 39,7 47,3 9,85	16,2 27,3 40 35,8
40	$\begin{array}{c} 0\\ 10\\ 20\\ 30\\ 40 \end{array}$	64,2 42,4 25,4 13,1 3,42	75,3 49,3 29,1 24,4 2,88	76,4 37,3 15,2 4,28 0,49	64,2 90,5 117 141 18,8	75,3 105 139 167 21,2	76,4136160251195

При решении задачи о предельном равновесии среды В. В. Соколовским обычно рассматривался случай полубесконечной нагрузки, что соответствует фундаменту неограниченной ширины. В действительности фундаменты имеют конечную ширину *B*, и это обстоятельство должно учитываться в расчете. Если нагрузка на фундамент вертикальна и симметрична, а пригрузка с обеих сторон его одинакова, то, как следует из опытов, может произойти либо одностороннее, либо двустороннее выпирание. При этом несущая способность остается практически одной и той же. В данном случае мы пользуемся схемой с двусторонним выпиранием. Для симметричной нагрузки возможны две схемы выпирания, одна из них была рассмотрена в свое время Прандтлем, а вторая Р. Хиллом.

В наших экспериментах [2], проведенных в Водгео в 1948—1949 гг. и засвидетельствовавших наличие упругого ядра под штампом, иногда встречались опыты, которые указывали на возможность применения такой схемы.

Приводящаяся ниже схема также не исключает наличия упругого ядра под штампом. На рис. 1, в изображены зоны с предельным состоянием 1 и с непредельным состоянием 2 и 3, в которых теоретически имеет место минимально-напряженное предельное состояние, но которые обычно входят в состав ядра. Однако очертание ядра при принятой схеме несколько иное, чем получалось в опытах, где ядро было сплошным, и поэтому можно предположить, что получаемая несущая способность будет несколько ниже действительной, но, видимо, незначительно. Мы применили указанную схему для определения несущей способности основания, нагрузка на которое наклонна, не симметрична и пригрузка по бокам неодинакова. Следует отметить, что в этой схеме (см. рис. $1, \beta$) предполагается возможность выпирания в обе стороны от фундамента. Вычислений по формуле (1) из-за предположения о двустороннем выпирании (см. рис. \mathbf{I}, \mathbf{z}) оказывается недостаточно: необходимо знать ординаты, соответствующие правой части предельной эпюры. Для их определения следует воспользоваться формулой, аналогичной записанной ранее:

$$q_{f} = N_{a}^{11} \gamma D_{2} + N_{c}^{11} c + N_{\tau}^{11} \gamma (B - x).$$
⁽²⁾

Таким образом, для построения предельной эпюры нормальных напряжений следует положить в формуле (1) x = 0, x = B и получить соответственно $q_{f,z}^{I} = AA^{I}$ и $q_{f,z}^{II} = FF^{I}$ (рис. 1, z), а в формуле (2) x = B, x = 0 и получить соответственно $q_{f,z}^{III} = FF^{II}$ и $q_{f,z}^{III} = AA^{II}$. Значения коэффициентов $N_{q,z}^{II}$ и N_{τ}^{II} также приведены в табл. 1. Они досчитаны нами по формулам, приведенным у Соколовского [1]. Касательные напряжения $q_{f,x}$ во всех точках под фундаментом выражаются через нормальные с помощью зависимости

$$q_{f, x} = q_{f, z} \operatorname{tg} \delta. \tag{3}$$

Отыскав $q_{f,z}^{I}$, $q_{f,z}^{II}$, $q_{f,z}^{III}$, $q_{f,z}^{IV}$, $q_{f,z}^{IV}$ и отложив их графически в масштабе (см. рис. 1, *z*), находим точку пересечения линий, ограничивающих ординаты предельных эпюр. Далее, полагая, что x = AG, можно по формуле (1) найти $q_{f,z}^{V} = GG^{I}$. После этого отыскивается величина равнодействующей предельной эпюры реактивных давлений, представленная суммой площадей левой и правой трапеций, и точка ее приложения

$$Q_{f, z} = Q_{f, z}^{\mathsf{I}} + Q_{f, z}^{\mathsf{II}}.$$

Абсциссы центров тяжестей площадей этих трапеций, т. е. точек приложения сил $Q_{f,z}^{I}$ и $Q_{f,z}^{I}$, находятся графически. Координата точки приложения суммарной равнодействующей Q определяется из соотношения

$$l = e + \frac{B}{2} = \frac{Q_{f, z}^{l} l_{1} + Q_{f, z}^{l} l_{2}}{Q_{f, z}^{l} + Q_{f, z}^{l}},$$
(4)

где l — эксцентрицитет относительно середины подошвы фундамента,

$$Q_{f,z}^{I} = \frac{1}{2} (AA^{I} + GG^{I}) AG; \quad Q_{f,z}^{II} = \frac{1}{2} (GG^{I} + FF^{II}) GF.$$

После этого следует сопоставить полученную эпюру с фактической, определяемой из усилия $Q_{a,z}$, приложенного к фундаменту, и момента M относительно середины подошвы фундамента, по формулам внецентренного сжатия сопротивления материалов. Совершенно очевидно, что в общем случае фактический эксцентрицитет (см. рис. 1, a)

$$e_1 = M/Q_{a, z}$$

не равен полученному для предельного состояния, т. е. $e_1 \neq e$. Для учета влияния эксцентрицитета мы воспользуемся результатами экспериментальных исследований А. А. Ничипоровича и Н. Я. Хрусталева [3]. С помощью этих данных можно построить удобный график (рис. 2, *a*) для определения коэффициента $\alpha \leq 1$, причем

$$\alpha = \overline{Q}_{f, z} / Q_{f, z}, \tag{5}$$

где $Q_{f,z}$ — величина несущей способности, и $\overline{Q_{f,z}}$ — действительная несущая способность уже не при эксцентрицитете *e*, а при заданном эксцентрицитете *e*₁. Коэффициент α определяется по этому графику следующим образом. По оси абсцисс откладывается отношение $\frac{e}{B}$, затем устанавливается ближайшая справа кривая, пересекающая ординату, равную единице при абсциссе (равной отношению $\frac{e}{B}$. По этой кривой отыскивается величина ординаты при абсциссе, соответствующей заданному отношению $\frac{e_1}{B}$, которая равна α . Ключ к указанному графику помещен на рис. 2, б. Искомая несущая способность $\overline{Q}_{f,z}$ вычисляется по формуле

$$\overline{Q}_{f, z} = \alpha Q_{f, z}. \tag{6}$$

Если мы имеем, что $e_1 > e$, то в этом случае следует принимать в запас $\alpha = 1$.

Коэффициент запаса К_s определяется как отношение

$$K_s = Q_{f, z}/Q_{a, z},$$

где $Q_{a,z}$ — заданная вертикальная нагрузка на фундамент.

При теоретическом рассмотрении упруго-пластического равновесил тупого плоско-деформированного сыпучего клина будем исходить для оценки упругого или пласти-

ческого состояния из некоторой функции f, удовлетворяющей условию прочности Кулона в виде

$$f = \sqrt{\frac{1}{4} (\sigma_r - \sigma_\theta)^2 + \tau_{r\theta}^2} - \sin\varphi \left(\frac{\sigma_r + \sigma_\theta}{2} + c \operatorname{ctg} \varphi \right).$$
(7)

Для плоского напряженного состояния, а также для пространственного напряженного, как это следует из

Рис. 2. График для определения коэффициента *а* – график; *б* – ключ пользования графиком (номера указывают порядок выполняемых операций)

исследований И. В. Федорова [4], значение функции будет иным, чем указано в формуле (7). Если в приведенной функции f разность в правой части больше нуля, то грунт обладает некоторым остаточным сопротивлением срезу и находится в упругом состоянии. Критерием для оценки пластического состояния массы грунта принимается условие f=0. Для описания механических свойств материала, обладающего трением и сцеплением, примем модель идеального упруго-пластического тела.

Такая идеализированная модель несколько отличается от действительности тем, что диаграмма зависимости между напряжением и деформацией не состоит из двух отрезков прямых и, как показывают опыты, при этом не наблюдается резко выраженной точки перелома, где материал переходит в пластическое состояние.

Рассмотрим плоско-деформированное упруго-пластическое равновесие невесомого тупого клина (откоса), среда которого обладает трением и сцеплением.

При решении задачи будем пользоваться полярными координатами *r* и θ с началом их в θ (рис. 3). Распределение напряжений в тупом клине с углом наклона α , нагруженном на поверхности косой равномерно распределенной нагрузкой, в случае, когда среда находится в упругом состоянии, определяется формулами, известными в теории упругости:

$$\begin{aligned} \sigma_{r} \\ \sigma_{\theta} \\ \end{array} &= p + t_{0} \left(\pi + \frac{1}{\sin 2\alpha} \right) + \frac{-p - t_{0} \Phi}{\psi_{0}} \left[\pi + \operatorname{ctg} \alpha - 2\theta \pm \\ \pm \left(\sin 2\theta - \operatorname{ctg} \alpha \cos 2\theta \right) \right] - t_{0} \left(2\theta \pm \frac{\cos 2\theta}{\sin 2\alpha} \right), \\ \tau_{r\theta} &= t_{0} \left(1 + \frac{\sin 2\theta}{\sin 2\alpha} \right) + \frac{-p - t_{0} \Phi}{\psi_{0}} \left(1 + \cos 2\theta + \operatorname{ctg} \alpha \sin 2\theta \right), \end{aligned}$$
(8)

где

$$\Phi = 2\alpha + \pi + \operatorname{ctg} \alpha,$$

$$\psi_0 = 2\alpha + \pi + 2\operatorname{ctg} \alpha.$$

Пластическое состояние будет определяться максимумом функции f. Для нахождения максимума функции f подставим значения σ_r , σ_0 и τ_{r0} . из формул (8) в (7); взяв производную $\frac{df}{d\theta}$ и решая уравнение относительно угла θ , найдем, что пластическое состояние в грунте должно появиться при угле

$$\theta_1 = F(\sin\varphi), \tag{9}$$

где F — некоторая функция, определяемая видом компонент напряжений, а

$$\operatorname{tg} \mu_0 = \frac{t_0}{P}.$$

По мере увеличения нагрузки P пластическая зона будет увеличиваться и достигнет своего некоторого предела вправо от вертикальной оси до угла θ_1 , а влево — до угла θ_2 , как показано на рис. 3.

Напряжения в правой и левой упругих областях (область I при $\theta_1 \leqslant \theta \leqslant \frac{\pi}{2}$ и область III при $\theta_2 \gg \theta \gg -\alpha$) можно определять, пользуясь формулами теории упругости

$$\begin{aligned} \left. \begin{array}{c} \sigma_{r} \\ \sigma_{\theta} \end{array} \right\} &= A_{1} - 2A_{2}\theta \pm (A_{3}\sin 2\theta + A_{4}\cos 2\theta), \\ \tau_{r\theta} &= A_{2} + A_{3}\cos 2\theta - A_{4}\sin 2\theta. \end{aligned}$$
(10)

В пластической области II $\theta_2 \le \theta \le \theta_1$ напряжения могут быть найдены с помощью известных уравнений равновесия и уравнения предельного равновесия.

Компоненты напряжения σ_r , σ и τ целесообразно принять по В. В. Соколовскому (1954) в следующем виде:

где ψ — угол наклона наибольшего главного нормального напряжения σ_1 к радиусу *r* (рис. 4);

Рис. 3. Расчетная схема для тупого клина, запруженного на внешней грани наклонной к ней нагрузкой

Рис. 4. Напряженное состояние в точке на плоскости *ху* 1-1-е семейство линий скольжения: 2-2-е семейство линий скольжения

 $\mu = \frac{\pi}{4} - \frac{\varphi}{2}$ - угол наклона главного напряжения σ_1 к первому семейству линий скольжения.

Тогда, учитывая, что $\sigma_r = \sigma_r(\theta)$, $\sigma_{\theta} = \sigma_{\theta}(\theta)$ и $\tau_{r\theta} = \tau_{r\theta}(\theta)$, из уравнения равновесия с учетом зависимостей (11) можно получить

$$\frac{d\sigma}{d\theta}\sin\varphi\sin2\psi + 2\sigma\sin\varphi\cos2\psi\left(\frac{d\psi}{d\theta} + 1\right) = 0,$$

$$\frac{d\sigma}{d\theta}\left(1 - \sin\varphi\cos2\psi\right) + 2\sigma\sin\varphi\sin2\psi\left(\frac{d\psi}{d\theta} + 1\right) = 0.$$
(12)

Эта система имеет несколько вариантов решений.

Выбор того или иного решения определяется физической сущностью поставленной задачи, а также условиями на границе. Для рассматриваемой задачи пригодно решение, в котором

$$\psi = \frac{\pi}{4} + \frac{\varphi}{2}.\tag{13}$$

Подставляя значения ψ в уравнение (12), найдем, что $\sigma = M_1 e^{2\theta \operatorname{tg} \varphi}$. (14)

Таким образом, компоненты напряжений в пластической области будут в соответствии с формулами (11) н (14) следующими:

$$\begin{aligned} \left. \sigma_{r} \\ \sigma_{\theta} \\ \right\} &= M_{1} e^{2\theta \operatorname{tg} \varphi} \left[1 \pm \varepsilon \underbrace{\xi} \right] - c \operatorname{ctg} \varphi; \\ \tau_{r\theta} &= -M_{1} e^{2\theta \operatorname{tg} \varphi} \sin \varphi \cos \varphi. \end{aligned}$$

$$(15)$$

Для определения компонентов напряжений в первой и третьей областях с помощью уравнения (10) приходится отыскивать одиннадчать произвольных постоянных: по четыре для первой и третьей областей (A_1 , A_2 , A_3 , A_4 , A'_1 , A'_2 , A'_3 , A'_4) и значение M_1 , являющееся одним и тем же для первой и третьей областей. Кроме того, должны быть найдены углы θ_1 и θ_2 , характеризующие размер пластической области, которые находятся из граничных условий при $\theta = \frac{\pi}{2}$; $\sigma_{\theta} = p$; $\tau_{r\theta} = 0$ и при $\theta = -\alpha$; $\sigma_{\theta} = 0$, $\tau_{r\theta} = 0$, а также из условий непрерывности компонентов напряжений на границе между упругой и пластической областями при $\theta = \theta_1$ и $\theta = \theta_2$.

После определения A_1 , A_2 , A_3 , A_4 и M_1 компоненты напряжений в области I, выраженные через θ_1 , принимают вид

$$\begin{cases} \sigma_r \\ \sigma_\theta \end{cases} = p + t_0 \left[\pi - 2\theta - (\pi - 2\theta \pm 1) \frac{\sin 2\theta_1}{1 + \cos 2\theta_1} \pm \sin 2(\theta_1 - \theta) \right] - \\ M_1 e^{2\theta_1 \log \varphi} \sin \varphi \frac{\sin(2\theta_1 + \varphi) + \sin \varphi + (\pi - 2\theta)\cos(2\theta_1 + \varphi) \pm [\sin \varphi \cos 2\theta - \sin(2\theta_1 + \varphi - 2\theta)]}{1 + \cos^2 \theta_1} \right]$$

(16)

$$-M_1 e^{2\theta_1 \operatorname{tg} \varphi} \sin \varphi \, \frac{\sin(2\theta_1 + \varphi) + \sin\varphi + (\pi - 2\theta)\cos(2\theta_1 + \varphi) \pm [\sin\varphi\cos 2\theta - \sin(2\theta_1 + \varphi - 2\theta)]}{1 + \cos 2\theta_1}.$$

$$\tau_{r\theta} = t_0 \left(1 - \frac{\cos 2\left(\theta_1 - \theta\right) + \cos 2\theta_1}{1 + \cos 2\theta_1} \right) - M_1 e^{2\theta_1 \operatorname{tg} \varphi} \sin \varphi \frac{\cos\left(2\theta_1 + \varphi - 2\theta\right) + \cos\left(2\theta_1 + \varphi\right) + \sin \varphi \sin 2\theta}{1 + \cos 2\theta_1} ,$$

где

$$\mathcal{M}_{1} = \frac{(p + c \operatorname{ctg} \varphi) (1 + \cos 2\theta_{1}) - t_{0} (\pi - 2\theta_{1} - \sin 2\theta_{1})}{e^{2\theta_{1} \operatorname{tg} \varphi} \{1 + \cos 2\theta_{1} + \sin \varphi [(\pi - 2\theta_{1}) \cos (2\theta_{1} + \varphi) + \sin (2\theta_{1} + \varphi) + \sin \varphi]\}}.$$
(17)

Аналогичным образом находятся компоненты и в третьей упругой области. Выражения для них будут следующими:

$$\begin{aligned} \left. \begin{array}{l} \sigma_{r} \\ \sigma_{\theta} \end{array} \right\} &= M_{2}e^{2\theta_{2} \operatorname{tg} \varphi} \frac{\sin \varphi}{1 - \cos 2(\theta_{2} + \alpha)} \left[-2\left(\alpha + \theta\right) \cos\left(2\theta_{2} + 2\alpha + \varphi\right) + \right. \\ &+ \sin\left(2\theta_{2} + 2\alpha + \varphi\right) - \sin \varphi \mp \sin\left(2\theta - 2\theta_{2} - \varphi\right) \mp \sin \varphi \cos\left(2\alpha + 2\theta\right) \right], \\ \left. \tau_{r\theta} &= -M_{2}e^{2\theta_{2} \operatorname{tg} \varphi} \frac{\sin \varphi}{1 - \cos 2(\theta_{2} + \alpha)} \left[\cos\left(2\theta_{2} + \varphi - 2\theta\right) - \right. \\ &- \sin \varphi \sin\left(2\alpha + 2\theta\right) - \cos\left(2\theta_{2} + \varphi + 2\alpha\right) \right], \end{aligned}$$

где

$$M_2 \simeq \frac{c \operatorname{ctg} \varphi \left[1 - \cos 2 \left(\theta_2 + \alpha\right)\right] e^{-2\theta_2 \operatorname{tg} \varphi}}{1 - \cos 2(\theta_2 + \alpha) + \sin \varphi \left[2(\alpha + \theta_2) \cos \left(2\theta_2 + 2\alpha + \varphi\right) - \sin \left(2\theta_2 + 2\alpha + \varphi\right) + \sin \varphi\right]}.$$
 (19)

Для пластической области *II* компоненты напряжений после определения *M*₁ напишутся так:

$$\begin{aligned} \sigma_{r} \\ &= \frac{\{(p+c\,\cot g\,\varphi)\,(1+\cos 2\theta_{1})-t_{0}\,[(\pi-2\theta_{1})+\sin 2\theta_{1}]\}\,e^{2\theta\,tg\,\varphi}\,(1\pm\sin^{2}\varphi)}{e^{2\theta_{1}\,tg\,\varphi}\{1+\cos 2\theta_{1}+\sin \varphi\,[(\pi-2\theta_{1})\cos (2\theta_{1}+\varphi)+\sin (2\theta_{1}+\varphi)+\sin \varphi]\}} -cctg\varphi, \\ &\tau_{r\theta} = -\frac{\{(p+c\,\cot g\,\varphi)\,(1+\cos 2\theta_{1})-t_{0}\,[(\pi-2\theta_{1})+\sin 2\theta_{1}]\}\,e^{2\theta\,tg\,\varphi}\sin \varphi\cos \varphi}{e^{2\theta_{1}\,tg\,\varphi}\{1+\cos 2\theta_{1}+\sin \varphi\,[\pi-2\theta_{1})\cos (2\theta_{1}+\varphi)+\sin (2\theta_{1}+\varphi)+\sin \varphi]\}}. \end{aligned}$$
(20)

Для нахождения $\frac{p}{c} = f(\theta_1, \theta_2)$ воспользуемся тем, что величины M_1 и M_2 , найденные из правых и левых граничных условий, должны совпадать. На этом основании можем найти для $\frac{p}{c}$ следующее выражение:

$$\frac{p}{c} = -\frac{t_0}{c} \frac{\pi - 2\theta_1 - \sin 2\theta_1}{1 + \cos 2\theta_1} - \operatorname{ctg} \varphi \left\{ 1 - \frac{\theta_1 - \theta_1}{1 + \cos 2\theta_1} - \frac{\theta_1}{2\theta_1} \right\}$$

$$-\frac{e^{2\theta_1 \operatorname{tg} \varphi} \left[1-\cos 2(\theta_2+\alpha)\right] \left\{1+\cos 2\theta_1+\sin \varphi \left[(\pi-2\theta_1)\cos \left(2\theta_1+\varphi\right)+\sin \left(2\theta_1+\varphi\right)+\sin \varphi\right]\right\}}{e^{2\theta_2 \operatorname{tg} \varphi} \left(1+\cos 2\theta_1\right) \left\{1-\cos 2(\theta_2+\alpha)+\sin \varphi \left[2(\alpha+\theta_2)\cos \left(2\theta_2+2\alpha+\varphi\right)-\sin \left(2\theta_2+2\alpha+\varphi\right)+\sin \varphi\right]\right\}}.$$
(21)

Из формул (16), (18) и (20) можно получить компоненты напряжений для случая $\varphi = 0$ и $t \neq 0$, а также для $\varphi \neq 0$, t = 0 и $\alpha = \frac{\pi}{2}$.

Впервые упруго-пластическое решение для тупого клина, загруженного по граням равномерно распределенными нагрузками *p* и *q*, было дано И. В. Федоровым [5].

Значение $\frac{p}{c}$ при t = 0 и $\varphi \neq 0$ имеет следующий вид:

$$=\frac{\frac{p}{c}+\operatorname{ctg}\varphi}{\frac{e^{2(\theta_{1}-\theta_{2})\operatorname{tg}\varphi}\left[1-\cos 2(\theta_{2}+\alpha)\right]\left\{1+\cos 2\theta_{1}+\sin \varphi\right[(\pi-2\theta_{1})\cos \left(2\theta_{1}+\varphi\right)+\sin \left(2\theta_{1}+\varphi\right)+\sin \varphi\right]\right\}}{(1+\cos 2\theta_{1})\left\{1-\cos 2(\theta_{2}+\alpha)+\sin \varphi\right[2(\alpha+\theta_{2})\cos \left(2\theta_{2}+2\alpha+\varphi\right)-\sin \left(2\theta_{2}+2\alpha+\varphi\right)+\sin \varphi\right]\right\}}}\times\left(\frac{q}{c}+\operatorname{ctg}\varphi\right).$$
(22)

Все компоненты напряжений выражены через неизвестные θ_1 и θ_2 . Для определения этих значений недостает еще одного уравнения. Из линейной зависимости между θ_1 и θ_2 в момент зарождения пластической области и полного предельного состояния находят выражение, связывающее между собой $\lfloor \theta_1$ и θ_2 для тупого клина:

$$\theta_2 = \frac{\mu - \alpha - \theta_0}{\mu - \theta_0} \theta_1 + \frac{\alpha \theta_0}{\mu - \theta_0}.$$
 (23)

Приняв $\alpha = \frac{\pi}{2}$ и $\theta_0 = -\varphi$, можно получить из формулы (23) следуюшие выражения θ_2 для полуплоскости:

$$\theta_2 = -\frac{\mu}{\mu + \varphi} \theta_1 - \frac{\frac{\mu}{2} \varphi}{\mu + \varphi}.$$
 (24)

Из приведенного нами решения для тупого клина частным случаем при $\varphi = 0$ будут являться решения, полученные ранее Фриденталем [6] н В. В. Соколовским [1] для полуплоскости, а для тупого клина Г. С. Шаниро [7]. При $\alpha = \frac{\pi}{2}, \frac{p}{c} = f(\theta_1, \theta_2)$ из формулы (22) будет

$$\frac{p}{c} + \operatorname{ctg} \varphi =$$

$$=\frac{e^{2(\theta_1-\theta_2)}\operatorname{tg}\varphi\left(1+\cos 2\theta_2\right)\left\{1+\cos 2\theta_1+\sin \varphi\left[(\pi-2\theta_1)\cos \left(2\theta_1+\varphi\right)+\sin \left(2\theta_1+\varphi\right)+\sin \varphi\right]\right\}}{(1+\cos 2\theta_1)\left\{1+\cos 2\theta_2-\sin \varphi\left[(\pi+2\theta_2)\cos \left(2\theta_2+\varphi\right)-\sin \left(2\theta_2+\varphi\right)-\sin \varphi\right]\right\}}\times\left(\frac{q}{c}+\operatorname{ctg}\varphi\right).$$
(25)

Для определения величины пластической области в откосе в зависимости от вертикальной нагрузки и соответствующих грунтовых характеристик служат формулы (22) и (23), а для полуплоскости — (25) и

Рис. 5. График и зависимости размеров пластических зон θ_1 и θ_2 от $\frac{p}{c}$ для $\alpha = 30^\circ$ и различных значений φ

(24). При расчете необходимо задаться значением θ_1 , а затем, исходя из значения формул (23) или (24), можно для принятых φ и с найти θ_2 и $\frac{p}{c}$. На рис. 5 представлены кривые изменения $\frac{p}{c} = f(\theta_1, \theta_2)$ для тупого клина с $\alpha = 30^\circ$, а на рис. 6 приведены аналогичные кривые для полуплоскости в случае, если φ изменяется от 0 до 30° (q=0).

При одном и том же значении $\frac{p}{c}$ области пластических деформаций получаются тем больше, чем меньше пригрузка *q*, угол трения φ и сцепление *c*.

Условие пластичности Мора—Ренкина довольно часто используется для очертания границ области, находящейся в пластическом состоянии.

При этом компоненты напряжений принимаются исходя из упругих решений и подстановкой их в условие пластичности Мора-Ренкина получают для избранной системы координат уравнения ограничивающей кривой $F_1(r, \theta, \varphi) = 0$, в пределах которой грунт будет находиться в пластическом состоянии (F1 — некоторая функция, определяемая видом компонент напряжений). Разрешая это уравнение относительно *г* или θ , можно очертить область, находящуюся в пластическом состоянии.

Рис. 7. Сравнительный график пластических зон при решениях a) упруго-пластическом (1); б) упругом (2)

Произведенные на основе полученных решений определения размеров пластических областей для полуплоскости ($\varphi = 30^\circ$, $c = 0.2 \ \kappa r/cm^2$) и нагрузки *p*=3,1 *кг/см*² показывают, что величина пластической области. определенная из условия пластичности Мора-Ренкина с помощью выражений компонентов напряжений упругого решения, дает области в 2 раза большие, чем по предлагаемому решению рис. 7. Такое несоответствие в размерах пластической области может быть объяснено перераспределением напряжений, которые не учитываются при использовании упругого решения.

ЛИТЕРАТУРА

1. В. В. Соколовский, Статика сыпучей среды, Гостехиздат. М., 1954. 2. М. В. Малышев, Теоретические и экспериментальные исследования несущей

способности песчаного основания. Изд. Водгео, 1953. 3. А. А. Ничипорович, Н. Я. Хрусталев, Устойчивость бетонных водоподпорных сооружений на нескальных грунтах, Госстройиздат, М., 1957.

4. И. В. Федоров, О некоторых закономерностях прочности и деформируемости сыпучей среды, Изд. Водгео, 1957.

5. И. В. Федоров, Некоторые задачи упруго-пластического распределения напряжения в грунтах, связанные с расчетом оснований, Инженерный сборник, т. XXVI Ин-т механики АН СССР, М. 1958.

6. A. Freudenthal, The Inelastic Behavior of Engineering Materials and structures, 1952.

7. Г. С. Шапиро, Упруго-пластическое равновесие клина и разрывные решения в теории пластичности. Прикладная математика и механика, т. XVI, в. 1, 1952.