Результаты испытаний образцов глинистого грунта нарушенной структуры с целью определения параметров прочности

Цель испытаний

Оценить влияние условий нагружения глинистого грунта при неконсолидированно-недренированном сдвиге на параметры прочности Кулона: угол внутреннего трения, φ и силы удельного сцепления, c.

Методика проведения испытаний

Образцы грунта изготавливались из глины нарушенной структуры путем предварительного водонасыщения перемятой глины до показателя степени водонасыщения $S_r = 0.88 - 0.90$. Для создания примерно одинаковой плотности образцов использовался метод СОЮЗДОРНИИ с уплотнением образцов в приборе стандартного уплотнения конструкции ООО «Геотек» (рис. 1). Плотность образцов грунта после уплотнения серией в 40 ударов изменялась $\rho_d = 1.21 - 1.23$ г/см³. Физические показатели образцов грунта приведены в табл. 1.

w	w_L	W_p	I_p	I_L	ρ ,	$ ho_d$,	ρ_s ,	n,%	e	S_r
					г/см ³	Γ/cm^3	Γ/cm^3			
0,40	0,65	0,30	0,35	0,27	1,71	1,22	2,70	0,55	1,21	0,89

Рис. 1. Прибор стандартного уплотнения

Испытания образцов грунта проводились на срез при различных условиях нагружения деформации сдвига.

В первой серии опытов деформация среза прикладывалась статическим образом, т.е. нагружение касательными напряжениями ступенями вплоть до разрушения образца грунта. В качестве приборов использовались два сдвиговых прибора конструкции ООО «Геотек», отличающиеся тем, что в первом приборе максимально возможное перемещение срезной коретки равно 10 мм, а во втором приборе равно 25 мм.

Во второй серии опытов деформация среза прикладывалась непрерывно с заданной скоростью деформации, равна 3 мм/мин. Данная скорость деформации сдвига была принята исходя из условия продолжительности испытания. По ГОСТ 12248-96 она должна быть не более 2 мин. В первой серии опытов также длительность испытаний на срез ограничивалась 2 минутами.

В обоих сериях опытов нормальная нагрузка принималась равной 100, 200 и 300 кПа.

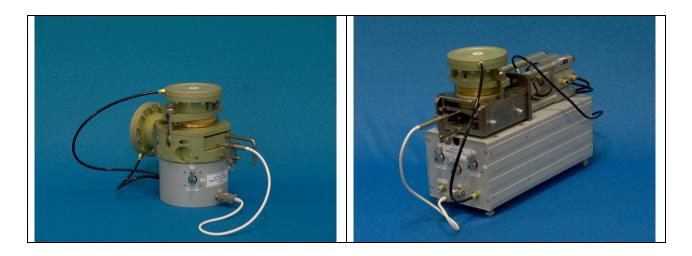


Рис. 3. Срезной прибор с деформацией среза 10 мм (а) и 25 мм (б)

Рис. 4. Срезной прибор с кинематическим нагружением со скоростью деформации среза от 0,01 мм/мин до 5,0 мм/мин

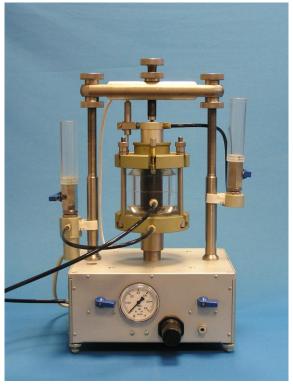


Рис. 5. Прибор трехосного сжатия типа А и Б

Результаты испытаний

На рис. 6, 7, 8 приведены графические зависимости, построенные по результатам испытаний.

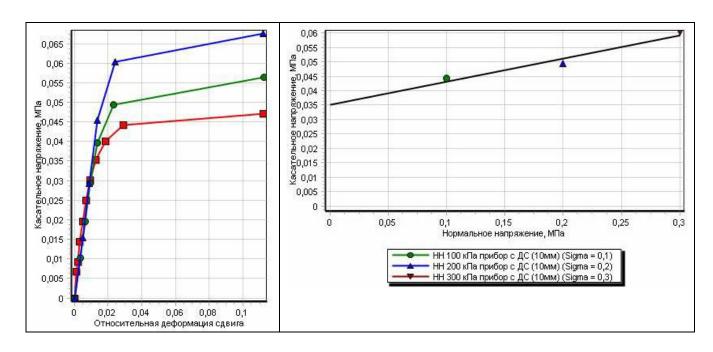


Рис. 6. Зависимость абсолютной деформации сдвига от касательного напряжения (а) и предельная прямая (б). Прибор рис. 3 а

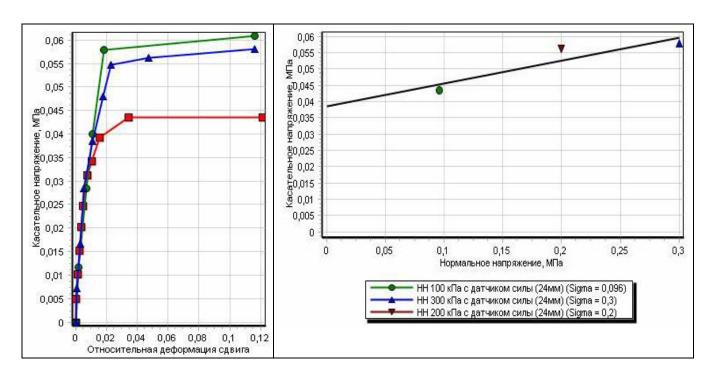


Рис. 7. Зависимость абсолютной деформации сдвига от касательного напряжения (а) и предельная прямая (б). Прибор рис. 3 б

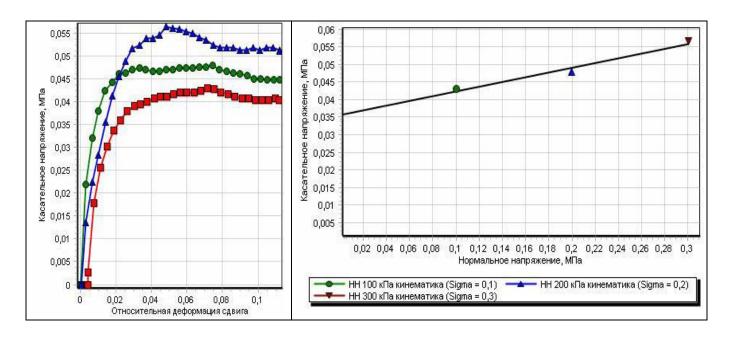


Рис. 8. Зависимость абсолютной деформации сдвига от касательного напряжения (а) и предельная прямая (б). Прибор рис. 4

На рис. 9.1, 9.2 приведены результаты испытания той же глины, но в условиях трехосного неконсолидированно-недренированного сдвига. Результаты опытов показывают практически те же значения параметров прочности.

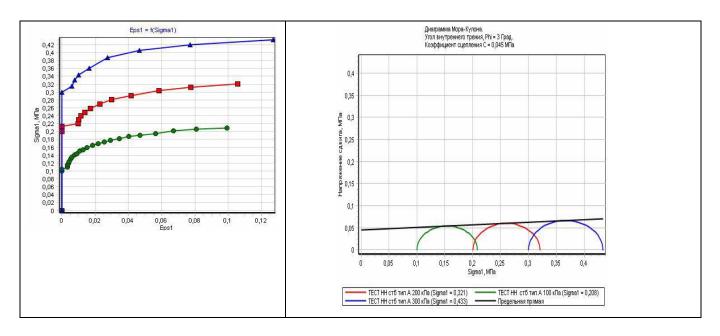


Рис. 9.1 Зависимость осевой деформации от девиатора напряжений (а) и предельная прямая (б), стб тип а

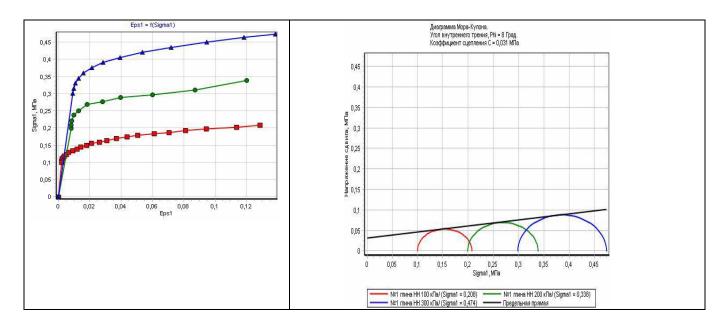


Рис. 9.2 Зависимость осевой деформации от девиатора напряжений (а) и предельная прямая (б), стб тип б

На рис. 10 приведены результаты испытания той же глины сдвиговым прибором конструкции Гидропроект. Результаты опытов показывают практически те же значения параметров прочности.

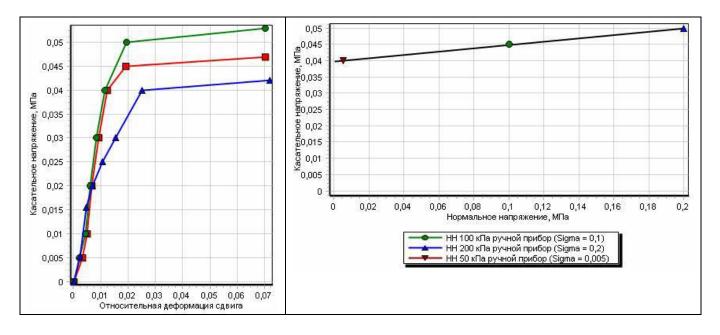


Рис. 10 – Результаты испытаний на срез в приборе конструкции НИИ «Гидропроект»

Полученные значения параметров прочности приведены в табл. 2.

Табл. 2. Параметры прочности глинистого грунта

Параметры	Прибор	Прибор	Прибор	Прибор трехосного		Сдвиговой	
прочности	типа А	типа Б	типа С	сжатия (рис.5)	прибор	
	(рис. 3а)	(рис. 3б)	(рис. 4)	Тип А	Тип Б	НИИ	
						«Гидропроект»	
Сцепление, c ,	35	39	36	45	31	40	
кПа							
Угол	5	4	4	3	8	3	
внутреннего							
трения, φ ,							
град.							

Из табл. 2 видно, что параметры прочности практически одинаковы. значение угла внутреннего трения объясняется неконсолидированно-недренированного нагружения. Неконсолидированные условия это мгновенное приложение нормальной нагрузки заданной величины 100, 200 и 300 кПа и сразу же мгновенное создание касательной нагрузки с интервалом 10 с (условие недренирования) при статическом нагружении и непрерывно при кинематическом нагружении. При данных условиях нагружения изменение объема водонасыщенного образца грунта от действия нормальной нагрузки практически отсутствует (поровая жидкость несжимаема, а отток ее незначителен) и не зависит, поэтому от величины нормального давления. При сдвиге изменение объема также незначительно. В связи с тем, что при обработке результатов используется полные напряжения, так как эффективные неизвестны (не измеряется поровое давление), то значения угла внутреннего трения получаются малыми.

Выводы

- 1. В условиях неконсолидированно-недренированного сдвига глины угол внутреннего трения получается малым по отношению к условиям консолидировано-дренированного сдвига. Теоретически он должен быть равен нулю и прочность грунта определяется только силами сцепления.
- 2. Использование результатов испытаний в условиях неконсолидированнонедренированного сдвига, например, при расчете расчетного сопротивления грунта приводит к консервативной оценке прочности грунта и удорожанию конструктивного решения фундамента.
- 3. Результаты испытаний в условиях неконсолидированнонедренированного сдвига рекомендуется использовать в том случае, если нагружение грунта производится быстрыми темпами, например, отсыпается

земляная насыпь, а естественное основание под насыпью сложено водонасыщенными грунтами.